Aromātai
13y^{3}+6y^{2}+7y+15
Kimi Pārōnaki e ai ki y
39y^{2}+12y+7
Graph
Tohaina
Kua tāruatia ki te papatopenga
13y^{3}+y^{2}+6y+8+5y^{2}+y+7
Pahekotia te 7y^{3} me 6y^{3}, ka 13y^{3}.
13y^{3}+6y^{2}+6y+8+y+7
Pahekotia te y^{2} me 5y^{2}, ka 6y^{2}.
13y^{3}+6y^{2}+7y+8+7
Pahekotia te 6y me y, ka 7y.
13y^{3}+6y^{2}+7y+15
Tāpirihia te 8 ki te 7, ka 15.
\frac{\mathrm{d}}{\mathrm{d}y}(13y^{3}+y^{2}+6y+8+5y^{2}+y+7)
Pahekotia te 7y^{3} me 6y^{3}, ka 13y^{3}.
\frac{\mathrm{d}}{\mathrm{d}y}(13y^{3}+6y^{2}+6y+8+y+7)
Pahekotia te y^{2} me 5y^{2}, ka 6y^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(13y^{3}+6y^{2}+7y+8+7)
Pahekotia te 6y me y, ka 7y.
\frac{\mathrm{d}}{\mathrm{d}y}(13y^{3}+6y^{2}+7y+15)
Tāpirihia te 8 ki te 7, ka 15.
3\times 13y^{3-1}+2\times 6y^{2-1}+7y^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
39y^{3-1}+2\times 6y^{2-1}+7y^{1-1}
Whakareatia 3 ki te 13.
39y^{2}+2\times 6y^{2-1}+7y^{1-1}
Tango 1 mai i 3.
39y^{2}+12y^{2-1}+7y^{1-1}
Whakareatia 2 ki te 6.
39y^{2}+12y^{1}+7y^{1-1}
Tango 1 mai i 2.
39y^{2}+12y^{1}+7y^{0}
Tango 1 mai i 1.
39y^{2}+12y+7y^{0}
Mō tētahi kupu t, t^{1}=t.
39y^{2}+12y+7\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
39y^{2}+12y+7
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}