Aromātai
\frac{xy^{3}}{282475249}
Whakaroha
\frac{xy^{3}}{282475249}
Tohaina
Kua tāruatia ki te papatopenga
7^{2}\left(x^{-1}\right)^{2}\times \left(49^{-2}xy\right)^{3}
Whakarohaina te \left(7x^{-1}\right)^{2}.
7^{2}x^{-2}\times \left(49^{-2}xy\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -1 me te 2 kia riro ai te -2.
49x^{-2}\times \left(49^{-2}xy\right)^{3}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
49x^{-2}\times \left(\frac{1}{2401}xy\right)^{3}
Tātaihia te 49 mā te pū o -2, kia riro ko \frac{1}{2401}.
49x^{-2}\times \left(\frac{1}{2401}\right)^{3}x^{3}y^{3}
Whakarohaina te \left(\frac{1}{2401}xy\right)^{3}.
49x^{-2}\times \frac{1}{13841287201}x^{3}y^{3}
Tātaihia te \frac{1}{2401} mā te pū o 3, kia riro ko \frac{1}{13841287201}.
\frac{1}{282475249}x^{-2}x^{3}y^{3}
Whakareatia te 49 ki te \frac{1}{13841287201}, ka \frac{1}{282475249}.
\frac{1}{282475249}x^{1}y^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 3 kia riro ai te 1.
\frac{1}{282475249}xy^{3}
Tātaihia te x mā te pū o 1, kia riro ko x.
7^{2}\left(x^{-1}\right)^{2}\times \left(49^{-2}xy\right)^{3}
Whakarohaina te \left(7x^{-1}\right)^{2}.
7^{2}x^{-2}\times \left(49^{-2}xy\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -1 me te 2 kia riro ai te -2.
49x^{-2}\times \left(49^{-2}xy\right)^{3}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
49x^{-2}\times \left(\frac{1}{2401}xy\right)^{3}
Tātaihia te 49 mā te pū o -2, kia riro ko \frac{1}{2401}.
49x^{-2}\times \left(\frac{1}{2401}\right)^{3}x^{3}y^{3}
Whakarohaina te \left(\frac{1}{2401}xy\right)^{3}.
49x^{-2}\times \frac{1}{13841287201}x^{3}y^{3}
Tātaihia te \frac{1}{2401} mā te pū o 3, kia riro ko \frac{1}{13841287201}.
\frac{1}{282475249}x^{-2}x^{3}y^{3}
Whakareatia te 49 ki te \frac{1}{13841287201}, ka \frac{1}{282475249}.
\frac{1}{282475249}x^{1}y^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 3 kia riro ai te 1.
\frac{1}{282475249}xy^{3}
Tātaihia te x mā te pū o 1, kia riro ko x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}