Whakaoti mō m
m = \frac{11}{7} = 1\frac{4}{7} \approx 1.571428571
m = -\frac{9}{7} = -1\frac{2}{7} \approx -1.285714286
Tohaina
Kua tāruatia ki te papatopenga
49m^{2}-14m+1-100=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7m-1\right)^{2}.
49m^{2}-14m-99=0
Tangohia te 100 i te 1, ka -99.
a+b=-14 ab=49\left(-99\right)=-4851
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 49m^{2}+am+bm-99. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4851 3,-1617 7,-693 9,-539 11,-441 21,-231 33,-147 49,-99 63,-77
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4851.
1-4851=-4850 3-1617=-1614 7-693=-686 9-539=-530 11-441=-430 21-231=-210 33-147=-114 49-99=-50 63-77=-14
Tātaihia te tapeke mō ia takirua.
a=-77 b=63
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(49m^{2}-77m\right)+\left(63m-99\right)
Tuhia anō te 49m^{2}-14m-99 hei \left(49m^{2}-77m\right)+\left(63m-99\right).
7m\left(7m-11\right)+9\left(7m-11\right)
Tauwehea te 7m i te tuatahi me te 9 i te rōpū tuarua.
\left(7m-11\right)\left(7m+9\right)
Whakatauwehea atu te kīanga pātahi 7m-11 mā te whakamahi i te āhuatanga tātai tohatoha.
m=\frac{11}{7} m=-\frac{9}{7}
Hei kimi otinga whārite, me whakaoti te 7m-11=0 me te 7m+9=0.
49m^{2}-14m+1-100=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7m-1\right)^{2}.
49m^{2}-14m-99=0
Tangohia te 100 i te 1, ka -99.
m=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49\left(-99\right)}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, -14 mō b, me -99 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-14\right)±\sqrt{196-4\times 49\left(-99\right)}}{2\times 49}
Pūrua -14.
m=\frac{-\left(-14\right)±\sqrt{196-196\left(-99\right)}}{2\times 49}
Whakareatia -4 ki te 49.
m=\frac{-\left(-14\right)±\sqrt{196+19404}}{2\times 49}
Whakareatia -196 ki te -99.
m=\frac{-\left(-14\right)±\sqrt{19600}}{2\times 49}
Tāpiri 196 ki te 19404.
m=\frac{-\left(-14\right)±140}{2\times 49}
Tuhia te pūtakerua o te 19600.
m=\frac{14±140}{2\times 49}
Ko te tauaro o -14 ko 14.
m=\frac{14±140}{98}
Whakareatia 2 ki te 49.
m=\frac{154}{98}
Nā, me whakaoti te whārite m=\frac{14±140}{98} ina he tāpiri te ±. Tāpiri 14 ki te 140.
m=\frac{11}{7}
Whakahekea te hautanga \frac{154}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
m=-\frac{126}{98}
Nā, me whakaoti te whārite m=\frac{14±140}{98} ina he tango te ±. Tango 140 mai i 14.
m=-\frac{9}{7}
Whakahekea te hautanga \frac{-126}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
m=\frac{11}{7} m=-\frac{9}{7}
Kua oti te whārite te whakatau.
49m^{2}-14m+1-100=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7m-1\right)^{2}.
49m^{2}-14m-99=0
Tangohia te 100 i te 1, ka -99.
49m^{2}-14m=99
Me tāpiri te 99 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{49m^{2}-14m}{49}=\frac{99}{49}
Whakawehea ngā taha e rua ki te 49.
m^{2}+\left(-\frac{14}{49}\right)m=\frac{99}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
m^{2}-\frac{2}{7}m=\frac{99}{49}
Whakahekea te hautanga \frac{-14}{49} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
m^{2}-\frac{2}{7}m+\left(-\frac{1}{7}\right)^{2}=\frac{99}{49}+\left(-\frac{1}{7}\right)^{2}
Whakawehea te -\frac{2}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{7}. Nā, tāpiria te pūrua o te -\frac{1}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-\frac{2}{7}m+\frac{1}{49}=\frac{99+1}{49}
Pūruatia -\frac{1}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-\frac{2}{7}m+\frac{1}{49}=\frac{100}{49}
Tāpiri \frac{99}{49} ki te \frac{1}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(m-\frac{1}{7}\right)^{2}=\frac{100}{49}
Tauwehea m^{2}-\frac{2}{7}m+\frac{1}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{7}\right)^{2}}=\sqrt{\frac{100}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{1}{7}=\frac{10}{7} m-\frac{1}{7}=-\frac{10}{7}
Whakarūnātia.
m=\frac{11}{7} m=-\frac{9}{7}
Me tāpiri \frac{1}{7} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}