Whakaoti mō x
x=\frac{y^{2}-y+18}{4}
Whakaoti mō y (complex solution)
y=\frac{\sqrt{16x-71}+1}{2}
y=\frac{-\sqrt{16x-71}+1}{2}
Whakaoti mō y
y=\frac{\sqrt{16x-71}+1}{2}
y=\frac{-\sqrt{16x-71}+1}{2}\text{, }x\geq \frac{71}{16}
Graph
Tohaina
Kua tāruatia ki te papatopenga
49-14x+x^{2}+\left(1-y\right)^{2}=\left(3-x\right)^{2}+5-y^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7-x\right)^{2}.
49-14x+x^{2}+1-2y+y^{2}=\left(3-x\right)^{2}+5-y^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-y\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(3-x\right)^{2}+5-y^{2}
Tāpirihia te 49 ki te 1, ka 50.
50-14x+x^{2}-2y+y^{2}=9-6x+x^{2}+5-y^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3-x\right)^{2}.
50-14x+x^{2}-2y+y^{2}=14-6x+x^{2}-y^{2}
Tāpirihia te 9 ki te 5, ka 14.
50-14x+x^{2}-2y+y^{2}+6x=14+x^{2}-y^{2}
Me tāpiri te 6x ki ngā taha e rua.
50-8x+x^{2}-2y+y^{2}=14+x^{2}-y^{2}
Pahekotia te -14x me 6x, ka -8x.
50-8x+x^{2}-2y+y^{2}-x^{2}=14-y^{2}
Tangohia te x^{2} mai i ngā taha e rua.
50-8x-2y+y^{2}=14-y^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
-8x-2y+y^{2}=14-y^{2}-50
Tangohia te 50 mai i ngā taha e rua.
-8x-2y+y^{2}=-36-y^{2}
Tangohia te 50 i te 14, ka -36.
-8x+y^{2}=-36-y^{2}+2y
Me tāpiri te 2y ki ngā taha e rua.
-8x=-36-y^{2}+2y-y^{2}
Tangohia te y^{2} mai i ngā taha e rua.
-8x=-36-2y^{2}+2y
Pahekotia te -y^{2} me -y^{2}, ka -2y^{2}.
-8x=-2y^{2}+2y-36
He hanga arowhānui tō te whārite.
\frac{-8x}{-8}=\frac{-2y^{2}+2y-36}{-8}
Whakawehea ngā taha e rua ki te -8.
x=\frac{-2y^{2}+2y-36}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x=\frac{y^{2}}{4}-\frac{y}{4}+\frac{9}{2}
Whakawehe -36-2y^{2}+2y ki te -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}