Whakaoti mō a
a=\sqrt{3}+5\approx 6.732050808
a=5-\sqrt{3}\approx 3.267949192
Tohaina
Kua tāruatia ki te papatopenga
10a-21-a^{2}=1
Whakamahia te āhuatanga tuaritanga hei whakarea te 7-a ki te a-3 ka whakakotahi i ngā kupu rite.
10a-21-a^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
10a-22-a^{2}=0
Tangohia te 1 i te -21, ka -22.
-a^{2}+10a-22=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 10 mō b, me -22 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-10±\sqrt{100-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
Pūrua 10.
a=\frac{-10±\sqrt{100+4\left(-22\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
a=\frac{-10±\sqrt{100-88}}{2\left(-1\right)}
Whakareatia 4 ki te -22.
a=\frac{-10±\sqrt{12}}{2\left(-1\right)}
Tāpiri 100 ki te -88.
a=\frac{-10±2\sqrt{3}}{2\left(-1\right)}
Tuhia te pūtakerua o te 12.
a=\frac{-10±2\sqrt{3}}{-2}
Whakareatia 2 ki te -1.
a=\frac{2\sqrt{3}-10}{-2}
Nā, me whakaoti te whārite a=\frac{-10±2\sqrt{3}}{-2} ina he tāpiri te ±. Tāpiri -10 ki te 2\sqrt{3}.
a=5-\sqrt{3}
Whakawehe -10+2\sqrt{3} ki te -2.
a=\frac{-2\sqrt{3}-10}{-2}
Nā, me whakaoti te whārite a=\frac{-10±2\sqrt{3}}{-2} ina he tango te ±. Tango 2\sqrt{3} mai i -10.
a=\sqrt{3}+5
Whakawehe -10-2\sqrt{3} ki te -2.
a=5-\sqrt{3} a=\sqrt{3}+5
Kua oti te whārite te whakatau.
10a-21-a^{2}=1
Whakamahia te āhuatanga tuaritanga hei whakarea te 7-a ki te a-3 ka whakakotahi i ngā kupu rite.
10a-a^{2}=1+21
Me tāpiri te 21 ki ngā taha e rua.
10a-a^{2}=22
Tāpirihia te 1 ki te 21, ka 22.
-a^{2}+10a=22
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-a^{2}+10a}{-1}=\frac{22}{-1}
Whakawehea ngā taha e rua ki te -1.
a^{2}+\frac{10}{-1}a=\frac{22}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
a^{2}-10a=\frac{22}{-1}
Whakawehe 10 ki te -1.
a^{2}-10a=-22
Whakawehe 22 ki te -1.
a^{2}-10a+\left(-5\right)^{2}=-22+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-10a+25=-22+25
Pūrua -5.
a^{2}-10a+25=3
Tāpiri -22 ki te 25.
\left(a-5\right)^{2}=3
Tauwehea a^{2}-10a+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-5\right)^{2}}=\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-5=\sqrt{3} a-5=-\sqrt{3}
Whakarūnātia.
a=\sqrt{3}+5 a=5-\sqrt{3}
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}