Whakaoti mō z
z=5
z=-5
Tohaina
Kua tāruatia ki te papatopenga
63+2z-z^{2}+\left(7-z\right)\left(9+z\right)=76
Whakamahia te āhuatanga tuaritanga hei whakarea te 7+z ki te 9-z ka whakakotahi i ngā kupu rite.
63+2z-z^{2}+63-2z-z^{2}=76
Whakamahia te āhuatanga tuaritanga hei whakarea te 7-z ki te 9+z ka whakakotahi i ngā kupu rite.
126+2z-z^{2}-2z-z^{2}=76
Tāpirihia te 63 ki te 63, ka 126.
126-z^{2}-z^{2}=76
Pahekotia te 2z me -2z, ka 0.
126-2z^{2}=76
Pahekotia te -z^{2} me -z^{2}, ka -2z^{2}.
-2z^{2}=76-126
Tangohia te 126 mai i ngā taha e rua.
-2z^{2}=-50
Tangohia te 126 i te 76, ka -50.
z^{2}=\frac{-50}{-2}
Whakawehea ngā taha e rua ki te -2.
z^{2}=25
Whakawehea te -50 ki te -2, kia riro ko 25.
z=5 z=-5
Tuhia te pūtakerua o ngā taha e rua o te whārite.
63+2z-z^{2}+\left(7-z\right)\left(9+z\right)=76
Whakamahia te āhuatanga tuaritanga hei whakarea te 7+z ki te 9-z ka whakakotahi i ngā kupu rite.
63+2z-z^{2}+63-2z-z^{2}=76
Whakamahia te āhuatanga tuaritanga hei whakarea te 7-z ki te 9+z ka whakakotahi i ngā kupu rite.
126+2z-z^{2}-2z-z^{2}=76
Tāpirihia te 63 ki te 63, ka 126.
126-z^{2}-z^{2}=76
Pahekotia te 2z me -2z, ka 0.
126-2z^{2}=76
Pahekotia te -z^{2} me -z^{2}, ka -2z^{2}.
126-2z^{2}-76=0
Tangohia te 76 mai i ngā taha e rua.
50-2z^{2}=0
Tangohia te 76 i te 126, ka 50.
-2z^{2}+50=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 50}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 0 mō b, me 50 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-2\right)\times 50}}{2\left(-2\right)}
Pūrua 0.
z=\frac{0±\sqrt{8\times 50}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
z=\frac{0±\sqrt{400}}{2\left(-2\right)}
Whakareatia 8 ki te 50.
z=\frac{0±20}{2\left(-2\right)}
Tuhia te pūtakerua o te 400.
z=\frac{0±20}{-4}
Whakareatia 2 ki te -2.
z=-5
Nā, me whakaoti te whārite z=\frac{0±20}{-4} ina he tāpiri te ±. Whakawehe 20 ki te -4.
z=5
Nā, me whakaoti te whārite z=\frac{0±20}{-4} ina he tango te ±. Whakawehe -20 ki te -4.
z=-5 z=5
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}