Manatoko
pono
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( 7 + 3 ) ^ { 2 } = 7 ^ { 2 } + 2 \times 7 \times 3 + 3 ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
10^{2}=7^{2}+2\times 7\times 3+3^{2}
Tāpirihia te 7 ki te 3, ka 10.
100=7^{2}+2\times 7\times 3+3^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
100=49+2\times 7\times 3+3^{2}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
100=49+14\times 3+3^{2}
Whakareatia te 2 ki te 7, ka 14.
100=49+42+3^{2}
Whakareatia te 14 ki te 3, ka 42.
100=91+3^{2}
Tāpirihia te 49 ki te 42, ka 91.
100=91+9
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
100=100
Tāpirihia te 91 ki te 9, ka 100.
\text{true}
Whakatauritea te 100 me te 100.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}