Aromātai
38-20\sqrt{3}\approx 3.358983849
Tohaina
Kua tāruatia ki te papatopenga
\left(7+\sqrt{3}\right)\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)+2^{2}-3+\sqrt{3}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-\sqrt{3}\right)^{2}.
\left(7+\sqrt{3}\right)\left(4-4\sqrt{3}+3\right)+2^{2}-3+\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
\left(7+\sqrt{3}\right)\left(7-4\sqrt{3}\right)+2^{2}-3+\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.
49-21\sqrt{3}-4\left(\sqrt{3}\right)^{2}+2^{2}-3+\sqrt{3}
Whakamahia te āhuatanga tuaritanga hei whakarea te 7+\sqrt{3} ki te 7-4\sqrt{3} ka whakakotahi i ngā kupu rite.
49-21\sqrt{3}-4\times 3+2^{2}-3+\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
49-21\sqrt{3}-12+2^{2}-3+\sqrt{3}
Whakareatia te -4 ki te 3, ka -12.
37-21\sqrt{3}+2^{2}-3+\sqrt{3}
Tangohia te 12 i te 49, ka 37.
37-21\sqrt{3}+4-3+\sqrt{3}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
41-21\sqrt{3}-3+\sqrt{3}
Tāpirihia te 37 ki te 4, ka 41.
38-21\sqrt{3}+\sqrt{3}
Tangohia te 3 i te 41, ka 38.
38-20\sqrt{3}
Pahekotia te -21\sqrt{3} me \sqrt{3}, ka -20\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}