Aromātai
\frac{11806}{27}\approx 437.259259259
Tauwehe
\frac{2 \cdot 5903}{3 ^ {3}} = 437\frac{7}{27} = 437.25925925925924
Tohaina
Kua tāruatia ki te papatopenga
\frac{67\times \frac{\frac{7}{3}}{2-\frac{1}{5}}}{\frac{1}{5}}+\left(\frac{1}{3}\right)^{-1}
Tāpirihia te 2 ki te \frac{1}{3}, ka \frac{7}{3}.
\frac{67\times \frac{\frac{7}{3}}{\frac{9}{5}}}{\frac{1}{5}}+\left(\frac{1}{3}\right)^{-1}
Tangohia te \frac{1}{5} i te 2, ka \frac{9}{5}.
\frac{67\times \frac{7}{3}\times \frac{5}{9}}{\frac{1}{5}}+\left(\frac{1}{3}\right)^{-1}
Whakawehe \frac{7}{3} ki te \frac{9}{5} mā te whakarea \frac{7}{3} ki te tau huripoki o \frac{9}{5}.
\frac{67\times \frac{35}{27}}{\frac{1}{5}}+\left(\frac{1}{3}\right)^{-1}
Whakareatia te \frac{7}{3} ki te \frac{5}{9}, ka \frac{35}{27}.
\frac{\frac{2345}{27}}{\frac{1}{5}}+\left(\frac{1}{3}\right)^{-1}
Whakareatia te 67 ki te \frac{35}{27}, ka \frac{2345}{27}.
\frac{2345}{27}\times 5+\left(\frac{1}{3}\right)^{-1}
Whakawehe \frac{2345}{27} ki te \frac{1}{5} mā te whakarea \frac{2345}{27} ki te tau huripoki o \frac{1}{5}.
\frac{11725}{27}+\left(\frac{1}{3}\right)^{-1}
Whakareatia te \frac{2345}{27} ki te 5, ka \frac{11725}{27}.
\frac{11725}{27}+3
Tātaihia te \frac{1}{3} mā te pū o -1, kia riro ko 3.
\frac{11806}{27}
Tāpirihia te \frac{11725}{27} ki te 3, ka \frac{11806}{27}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}