Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

64^{\frac{5}{6}}\left(x^{4}\right)^{\frac{5}{6}}
Whakarohaina te \left(64x^{4}\right)^{\frac{5}{6}}.
64^{\frac{5}{6}}x^{\frac{10}{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te \frac{5}{6} kia riro ai te \frac{10}{3}.
32x^{\frac{10}{3}}
Tātaihia te 64 mā te pū o \frac{5}{6}, kia riro ko 32.
\frac{5}{6}\times \left(64x^{4}\right)^{\frac{5}{6}-1}\frac{\mathrm{d}}{\mathrm{d}x}(64x^{4})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{5}{6}\times \left(64x^{4}\right)^{-\frac{1}{6}}\times 4\times 64x^{4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{640}{3}x^{3}\times \left(64x^{4}\right)^{-\frac{1}{6}}
Whakarūnātia.