Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

64^{-\frac{1}{6}}\left(a^{24}\right)^{-\frac{1}{6}}
Whakarohaina te \left(64a^{24}\right)^{-\frac{1}{6}}.
64^{-\frac{1}{6}}a^{-4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 24 me te -\frac{1}{6} kia riro ai te -4.
\frac{1}{2}a^{-4}
Tātaihia te 64 mā te pū o -\frac{1}{6}, kia riro ko \frac{1}{2}.
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{1}{6}-1}\frac{\mathrm{d}}{\mathrm{d}a}(64a^{24})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{7}{6}}\times 24\times 64a^{24-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-256a^{23}\times \left(64a^{24}\right)^{-\frac{7}{6}}
Whakarūnātia.