Aromātai
\frac{20746875}{26048}\approx 796.486294533
Tauwehe
\frac{3 \cdot 2213 \cdot 5 ^ {5}}{11 \cdot 37 \cdot 2 ^ {6}} = 796\frac{12667}{26048} = 796.4862945331695
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(61.5+10450\times 10^{-1}\right)\left(22.8-24.3\right)}{7.04\times 10^{-2}\left(24.3-53.9\right)}
Whakareatia te 4180 ki te 2.5, ka 10450.
\frac{\left(61.5+10450\times \frac{1}{10}\right)\left(22.8-24.3\right)}{7.04\times 10^{-2}\left(24.3-53.9\right)}
Tātaihia te 10 mā te pū o -1, kia riro ko \frac{1}{10}.
\frac{\left(61.5+1045\right)\left(22.8-24.3\right)}{7.04\times 10^{-2}\left(24.3-53.9\right)}
Whakareatia te 10450 ki te \frac{1}{10}, ka 1045.
\frac{1106.5\left(22.8-24.3\right)}{7.04\times 10^{-2}\left(24.3-53.9\right)}
Tāpirihia te 61.5 ki te 1045, ka 1106.5.
\frac{1106.5\left(-1.5\right)}{7.04\times 10^{-2}\left(24.3-53.9\right)}
Tangohia te 24.3 i te 22.8, ka -1.5.
\frac{-1659.75}{7.04\times 10^{-2}\left(24.3-53.9\right)}
Whakareatia te 1106.5 ki te -1.5, ka -1659.75.
\frac{-1659.75}{7.04\times \frac{1}{100}\left(24.3-53.9\right)}
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
\frac{-1659.75}{\frac{44}{625}\left(24.3-53.9\right)}
Whakareatia te 7.04 ki te \frac{1}{100}, ka \frac{44}{625}.
\frac{-1659.75}{\frac{44}{625}\left(-29.6\right)}
Tangohia te 53.9 i te 24.3, ka -29.6.
\frac{-1659.75}{-\frac{6512}{3125}}
Whakareatia te \frac{44}{625} ki te -29.6, ka -\frac{6512}{3125}.
-1659.75\left(-\frac{3125}{6512}\right)
Whakawehe -1659.75 ki te -\frac{6512}{3125} mā te whakarea -1659.75 ki te tau huripoki o -\frac{6512}{3125}.
\frac{20746875}{26048}
Whakareatia te -1659.75 ki te -\frac{3125}{6512}, ka \frac{20746875}{26048}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}