Whakaoti mō x
x=4
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(20-x\right)\left(100+10x\right)=2240
Tangohia te 40 i te 60, ka 20.
2000+100x-10x^{2}=2240
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-x ki te 100+10x ka whakakotahi i ngā kupu rite.
2000+100x-10x^{2}-2240=0
Tangohia te 2240 mai i ngā taha e rua.
-240+100x-10x^{2}=0
Tangohia te 2240 i te 2000, ka -240.
-10x^{2}+100x-240=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-100±\sqrt{100^{2}-4\left(-10\right)\left(-240\right)}}{2\left(-10\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -10 mō a, 100 mō b, me -240 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-10\right)\left(-240\right)}}{2\left(-10\right)}
Pūrua 100.
x=\frac{-100±\sqrt{10000+40\left(-240\right)}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
x=\frac{-100±\sqrt{10000-9600}}{2\left(-10\right)}
Whakareatia 40 ki te -240.
x=\frac{-100±\sqrt{400}}{2\left(-10\right)}
Tāpiri 10000 ki te -9600.
x=\frac{-100±20}{2\left(-10\right)}
Tuhia te pūtakerua o te 400.
x=\frac{-100±20}{-20}
Whakareatia 2 ki te -10.
x=-\frac{80}{-20}
Nā, me whakaoti te whārite x=\frac{-100±20}{-20} ina he tāpiri te ±. Tāpiri -100 ki te 20.
x=4
Whakawehe -80 ki te -20.
x=-\frac{120}{-20}
Nā, me whakaoti te whārite x=\frac{-100±20}{-20} ina he tango te ±. Tango 20 mai i -100.
x=6
Whakawehe -120 ki te -20.
x=4 x=6
Kua oti te whārite te whakatau.
\left(20-x\right)\left(100+10x\right)=2240
Tangohia te 40 i te 60, ka 20.
2000+100x-10x^{2}=2240
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-x ki te 100+10x ka whakakotahi i ngā kupu rite.
100x-10x^{2}=2240-2000
Tangohia te 2000 mai i ngā taha e rua.
100x-10x^{2}=240
Tangohia te 2000 i te 2240, ka 240.
-10x^{2}+100x=240
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-10x^{2}+100x}{-10}=\frac{240}{-10}
Whakawehea ngā taha e rua ki te -10.
x^{2}+\frac{100}{-10}x=\frac{240}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
x^{2}-10x=\frac{240}{-10}
Whakawehe 100 ki te -10.
x^{2}-10x=-24
Whakawehe 240 ki te -10.
x^{2}-10x+\left(-5\right)^{2}=-24+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=-24+25
Pūrua -5.
x^{2}-10x+25=1
Tāpiri -24 ki te 25.
\left(x-5\right)^{2}=1
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=1 x-5=-1
Whakarūnātia.
x=6 x=4
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}