Whakaoti mō x
x=\frac{1}{2}=0.5
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
18x^{2}-21x+5=\left(2x+1\right)\left(5x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x-5 ki te 3x-1 ka whakakotahi i ngā kupu rite.
18x^{2}-21x+5=10x^{2}-x-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+1 ki te 5x-3 ka whakakotahi i ngā kupu rite.
18x^{2}-21x+5-10x^{2}=-x-3
Tangohia te 10x^{2} mai i ngā taha e rua.
8x^{2}-21x+5=-x-3
Pahekotia te 18x^{2} me -10x^{2}, ka 8x^{2}.
8x^{2}-21x+5+x=-3
Me tāpiri te x ki ngā taha e rua.
8x^{2}-20x+5=-3
Pahekotia te -21x me x, ka -20x.
8x^{2}-20x+5+3=0
Me tāpiri te 3 ki ngā taha e rua.
8x^{2}-20x+8=0
Tāpirihia te 5 ki te 3, ka 8.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 8\times 8}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -20 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 8\times 8}}{2\times 8}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-32\times 8}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-20\right)±\sqrt{400-256}}{2\times 8}
Whakareatia -32 ki te 8.
x=\frac{-\left(-20\right)±\sqrt{144}}{2\times 8}
Tāpiri 400 ki te -256.
x=\frac{-\left(-20\right)±12}{2\times 8}
Tuhia te pūtakerua o te 144.
x=\frac{20±12}{2\times 8}
Ko te tauaro o -20 ko 20.
x=\frac{20±12}{16}
Whakareatia 2 ki te 8.
x=\frac{32}{16}
Nā, me whakaoti te whārite x=\frac{20±12}{16} ina he tāpiri te ±. Tāpiri 20 ki te 12.
x=2
Whakawehe 32 ki te 16.
x=\frac{8}{16}
Nā, me whakaoti te whārite x=\frac{20±12}{16} ina he tango te ±. Tango 12 mai i 20.
x=\frac{1}{2}
Whakahekea te hautanga \frac{8}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=2 x=\frac{1}{2}
Kua oti te whārite te whakatau.
18x^{2}-21x+5=\left(2x+1\right)\left(5x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x-5 ki te 3x-1 ka whakakotahi i ngā kupu rite.
18x^{2}-21x+5=10x^{2}-x-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+1 ki te 5x-3 ka whakakotahi i ngā kupu rite.
18x^{2}-21x+5-10x^{2}=-x-3
Tangohia te 10x^{2} mai i ngā taha e rua.
8x^{2}-21x+5=-x-3
Pahekotia te 18x^{2} me -10x^{2}, ka 8x^{2}.
8x^{2}-21x+5+x=-3
Me tāpiri te x ki ngā taha e rua.
8x^{2}-20x+5=-3
Pahekotia te -21x me x, ka -20x.
8x^{2}-20x=-3-5
Tangohia te 5 mai i ngā taha e rua.
8x^{2}-20x=-8
Tangohia te 5 i te -3, ka -8.
\frac{8x^{2}-20x}{8}=-\frac{8}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\left(-\frac{20}{8}\right)x=-\frac{8}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}-\frac{5}{2}x=-\frac{8}{8}
Whakahekea te hautanga \frac{-20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{5}{2}x=-1
Whakawehe -8 ki te 8.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-1+\left(-\frac{5}{4}\right)^{2}
Whakawehea te -\frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{4}. Nā, tāpiria te pūrua o te -\frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-1+\frac{25}{16}
Pūruatia -\frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{9}{16}
Tāpiri -1 ki te \frac{25}{16}.
\left(x-\frac{5}{4}\right)^{2}=\frac{9}{16}
Tauwehea x^{2}-\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{4}=\frac{3}{4} x-\frac{5}{4}=-\frac{3}{4}
Whakarūnātia.
x=2 x=\frac{1}{2}
Me tāpiri \frac{5}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}