Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

30x^{2}-3x-6=30x
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x-3 ki te 5x+2 ka whakakotahi i ngā kupu rite.
30x^{2}-3x-6-30x=0
Tangohia te 30x mai i ngā taha e rua.
30x^{2}-33x-6=0
Pahekotia te -3x me -30x, ka -33x.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 30\left(-6\right)}}{2\times 30}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 30 mō a, -33 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 30\left(-6\right)}}{2\times 30}
Pūrua -33.
x=\frac{-\left(-33\right)±\sqrt{1089-120\left(-6\right)}}{2\times 30}
Whakareatia -4 ki te 30.
x=\frac{-\left(-33\right)±\sqrt{1089+720}}{2\times 30}
Whakareatia -120 ki te -6.
x=\frac{-\left(-33\right)±\sqrt{1809}}{2\times 30}
Tāpiri 1089 ki te 720.
x=\frac{-\left(-33\right)±3\sqrt{201}}{2\times 30}
Tuhia te pūtakerua o te 1809.
x=\frac{33±3\sqrt{201}}{2\times 30}
Ko te tauaro o -33 ko 33.
x=\frac{33±3\sqrt{201}}{60}
Whakareatia 2 ki te 30.
x=\frac{3\sqrt{201}+33}{60}
Nā, me whakaoti te whārite x=\frac{33±3\sqrt{201}}{60} ina he tāpiri te ±. Tāpiri 33 ki te 3\sqrt{201}.
x=\frac{\sqrt{201}+11}{20}
Whakawehe 33+3\sqrt{201} ki te 60.
x=\frac{33-3\sqrt{201}}{60}
Nā, me whakaoti te whārite x=\frac{33±3\sqrt{201}}{60} ina he tango te ±. Tango 3\sqrt{201} mai i 33.
x=\frac{11-\sqrt{201}}{20}
Whakawehe 33-3\sqrt{201} ki te 60.
x=\frac{\sqrt{201}+11}{20} x=\frac{11-\sqrt{201}}{20}
Kua oti te whārite te whakatau.
30x^{2}-3x-6=30x
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x-3 ki te 5x+2 ka whakakotahi i ngā kupu rite.
30x^{2}-3x-6-30x=0
Tangohia te 30x mai i ngā taha e rua.
30x^{2}-33x-6=0
Pahekotia te -3x me -30x, ka -33x.
30x^{2}-33x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{30x^{2}-33x}{30}=\frac{6}{30}
Whakawehea ngā taha e rua ki te 30.
x^{2}+\left(-\frac{33}{30}\right)x=\frac{6}{30}
Mā te whakawehe ki te 30 ka wetekia te whakareanga ki te 30.
x^{2}-\frac{11}{10}x=\frac{6}{30}
Whakahekea te hautanga \frac{-33}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{11}{10}x=\frac{1}{5}
Whakahekea te hautanga \frac{6}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{11}{10}x+\left(-\frac{11}{20}\right)^{2}=\frac{1}{5}+\left(-\frac{11}{20}\right)^{2}
Whakawehea te -\frac{11}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{20}. Nā, tāpiria te pūrua o te -\frac{11}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{10}x+\frac{121}{400}=\frac{1}{5}+\frac{121}{400}
Pūruatia -\frac{11}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{10}x+\frac{121}{400}=\frac{201}{400}
Tāpiri \frac{1}{5} ki te \frac{121}{400} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{20}\right)^{2}=\frac{201}{400}
Tauwehea x^{2}-\frac{11}{10}x+\frac{121}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{20}\right)^{2}}=\sqrt{\frac{201}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{20}=\frac{\sqrt{201}}{20} x-\frac{11}{20}=-\frac{\sqrt{201}}{20}
Whakarūnātia.
x=\frac{\sqrt{201}+11}{20} x=\frac{11-\sqrt{201}}{20}
Me tāpiri \frac{11}{20} ki ngā taha e rua o te whārite.