Whakaoti mō x
x=\frac{\sqrt{23}}{6}+2\approx 2.799305254
x=-\frac{\sqrt{23}}{6}+2\approx 1.200694746
Graph
Tohaina
Kua tāruatia ki te papatopenga
36x^{2}-132x+121=12x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6x-11\right)^{2}.
36x^{2}-132x+121-12x=0
Tangohia te 12x mai i ngā taha e rua.
36x^{2}-144x+121=0
Pahekotia te -132x me -12x, ka -144x.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 36\times 121}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, -144 mō b, me 121 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-144\right)±\sqrt{20736-4\times 36\times 121}}{2\times 36}
Pūrua -144.
x=\frac{-\left(-144\right)±\sqrt{20736-144\times 121}}{2\times 36}
Whakareatia -4 ki te 36.
x=\frac{-\left(-144\right)±\sqrt{20736-17424}}{2\times 36}
Whakareatia -144 ki te 121.
x=\frac{-\left(-144\right)±\sqrt{3312}}{2\times 36}
Tāpiri 20736 ki te -17424.
x=\frac{-\left(-144\right)±12\sqrt{23}}{2\times 36}
Tuhia te pūtakerua o te 3312.
x=\frac{144±12\sqrt{23}}{2\times 36}
Ko te tauaro o -144 ko 144.
x=\frac{144±12\sqrt{23}}{72}
Whakareatia 2 ki te 36.
x=\frac{12\sqrt{23}+144}{72}
Nā, me whakaoti te whārite x=\frac{144±12\sqrt{23}}{72} ina he tāpiri te ±. Tāpiri 144 ki te 12\sqrt{23}.
x=\frac{\sqrt{23}}{6}+2
Whakawehe 144+12\sqrt{23} ki te 72.
x=\frac{144-12\sqrt{23}}{72}
Nā, me whakaoti te whārite x=\frac{144±12\sqrt{23}}{72} ina he tango te ±. Tango 12\sqrt{23} mai i 144.
x=-\frac{\sqrt{23}}{6}+2
Whakawehe 144-12\sqrt{23} ki te 72.
x=\frac{\sqrt{23}}{6}+2 x=-\frac{\sqrt{23}}{6}+2
Kua oti te whārite te whakatau.
36x^{2}-132x+121=12x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6x-11\right)^{2}.
36x^{2}-132x+121-12x=0
Tangohia te 12x mai i ngā taha e rua.
36x^{2}-144x+121=0
Pahekotia te -132x me -12x, ka -144x.
36x^{2}-144x=-121
Tangohia te 121 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{36x^{2}-144x}{36}=-\frac{121}{36}
Whakawehea ngā taha e rua ki te 36.
x^{2}+\left(-\frac{144}{36}\right)x=-\frac{121}{36}
Mā te whakawehe ki te 36 ka wetekia te whakareanga ki te 36.
x^{2}-4x=-\frac{121}{36}
Whakawehe -144 ki te 36.
x^{2}-4x+\left(-2\right)^{2}=-\frac{121}{36}+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-\frac{121}{36}+4
Pūrua -2.
x^{2}-4x+4=\frac{23}{36}
Tāpiri -\frac{121}{36} ki te 4.
\left(x-2\right)^{2}=\frac{23}{36}
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{23}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\frac{\sqrt{23}}{6} x-2=-\frac{\sqrt{23}}{6}
Whakarūnātia.
x=\frac{\sqrt{23}}{6}+2 x=-\frac{\sqrt{23}}{6}+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}