Tauwehe
3\left(x-4\right)\left(2x+1\right)
Aromātai
3\left(x-4\right)\left(2x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(2x^{2}-7x-4\right)
Tauwehea te 3.
a+b=-7 ab=2\left(-4\right)=-8
Whakaarohia te 2x^{2}-7x-4. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-8 2,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
1-8=-7 2-4=-2
Tātaihia te tapeke mō ia takirua.
a=-8 b=1
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(2x^{2}-8x\right)+\left(x-4\right)
Tuhia anō te 2x^{2}-7x-4 hei \left(2x^{2}-8x\right)+\left(x-4\right).
2x\left(x-4\right)+x-4
Whakatauwehea atu 2x i te 2x^{2}-8x.
\left(x-4\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(x-4\right)\left(2x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6x^{2}-21x-12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 6\left(-12\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 6\left(-12\right)}}{2\times 6}
Pūrua -21.
x=\frac{-\left(-21\right)±\sqrt{441-24\left(-12\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-21\right)±\sqrt{441+288}}{2\times 6}
Whakareatia -24 ki te -12.
x=\frac{-\left(-21\right)±\sqrt{729}}{2\times 6}
Tāpiri 441 ki te 288.
x=\frac{-\left(-21\right)±27}{2\times 6}
Tuhia te pūtakerua o te 729.
x=\frac{21±27}{2\times 6}
Ko te tauaro o -21 ko 21.
x=\frac{21±27}{12}
Whakareatia 2 ki te 6.
x=\frac{48}{12}
Nā, me whakaoti te whārite x=\frac{21±27}{12} ina he tāpiri te ±. Tāpiri 21 ki te 27.
x=4
Whakawehe 48 ki te 12.
x=-\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{21±27}{12} ina he tango te ±. Tango 27 mai i 21.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6x^{2}-21x-12=6\left(x-4\right)\left(x-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
6x^{2}-21x-12=6\left(x-4\right)\left(x+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6x^{2}-21x-12=6\left(x-4\right)\times \frac{2x+1}{2}
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-21x-12=3\left(x-4\right)\left(2x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 6 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}