Aromātai
10w^{2}-4w-3
Tauwehe
10\left(w-\left(-\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)\left(w-\left(\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)
Tohaina
Kua tāruatia ki te papatopenga
10w^{2}-w-5-3w+2
Pahekotia te 6w^{2} me 4w^{2}, ka 10w^{2}.
10w^{2}-4w-5+2
Pahekotia te -w me -3w, ka -4w.
10w^{2}-4w-3
Tāpirihia te -5 ki te 2, ka -3.
factor(10w^{2}-w-5-3w+2)
Pahekotia te 6w^{2} me 4w^{2}, ka 10w^{2}.
factor(10w^{2}-4w-5+2)
Pahekotia te -w me -3w, ka -4w.
factor(10w^{2}-4w-3)
Tāpirihia te -5 ki te 2, ka -3.
10w^{2}-4w-3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10\left(-3\right)}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-4\right)±\sqrt{16-4\times 10\left(-3\right)}}{2\times 10}
Pūrua -4.
w=\frac{-\left(-4\right)±\sqrt{16-40\left(-3\right)}}{2\times 10}
Whakareatia -4 ki te 10.
w=\frac{-\left(-4\right)±\sqrt{16+120}}{2\times 10}
Whakareatia -40 ki te -3.
w=\frac{-\left(-4\right)±\sqrt{136}}{2\times 10}
Tāpiri 16 ki te 120.
w=\frac{-\left(-4\right)±2\sqrt{34}}{2\times 10}
Tuhia te pūtakerua o te 136.
w=\frac{4±2\sqrt{34}}{2\times 10}
Ko te tauaro o -4 ko 4.
w=\frac{4±2\sqrt{34}}{20}
Whakareatia 2 ki te 10.
w=\frac{2\sqrt{34}+4}{20}
Nā, me whakaoti te whārite w=\frac{4±2\sqrt{34}}{20} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{34}.
w=\frac{\sqrt{34}}{10}+\frac{1}{5}
Whakawehe 4+2\sqrt{34} ki te 20.
w=\frac{4-2\sqrt{34}}{20}
Nā, me whakaoti te whārite w=\frac{4±2\sqrt{34}}{20} ina he tango te ±. Tango 2\sqrt{34} mai i 4.
w=-\frac{\sqrt{34}}{10}+\frac{1}{5}
Whakawehe 4-2\sqrt{34} ki te 20.
10w^{2}-4w-3=10\left(w-\left(\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)\left(w-\left(-\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{5}+\frac{\sqrt{34}}{10} mō te x_{1} me te \frac{1}{5}-\frac{\sqrt{34}}{10} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}