Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(n-\left(-\frac{1}{4}\sqrt{57}+\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{57}+\frac{5}{4}\right)\right)\left(3n^{2}-2n+1\right)}{3n^{2}-2n+1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
2\left(n-\left(-\frac{1}{4}\sqrt{57}+\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{57}+\frac{5}{4}\right)\right)
Me whakakore tahi te 3n^{2}-2n+1 i te taurunga me te tauraro.
2n^{2}-5n-4
Me whakaroha te kīanga.
\frac{2\left(n-\left(-\frac{1}{4}\sqrt{57}+\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{57}+\frac{5}{4}\right)\right)\left(3n^{2}-2n+1\right)}{3n^{2}-2n+1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
2\left(n-\left(-\frac{1}{4}\sqrt{57}+\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{57}+\frac{5}{4}\right)\right)
Me whakakore tahi te 3n^{2}-2n+1 i te taurunga me te tauraro.
2n^{2}-5n-4
Me whakaroha te kīanga.