Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(6m^{3}\right)^{2}-\left(9n\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6^{2}\left(m^{3}\right)^{2}-\left(9n\right)^{2}
Whakarohaina te \left(6m^{3}\right)^{2}.
6^{2}m^{6}-\left(9n\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
36m^{6}-\left(9n\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36m^{6}-9^{2}n^{2}
Whakarohaina te \left(9n\right)^{2}.
36m^{6}-81n^{2}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
\left(6m^{3}\right)^{2}-\left(9n\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6^{2}\left(m^{3}\right)^{2}-\left(9n\right)^{2}
Whakarohaina te \left(6m^{3}\right)^{2}.
6^{2}m^{6}-\left(9n\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
36m^{6}-\left(9n\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36m^{6}-9^{2}n^{2}
Whakarohaina te \left(9n\right)^{2}.
36m^{6}-81n^{2}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.