Aromātai
\frac{343}{1590}\approx 0.21572327
Tauwehe
\frac{7 ^ {3}}{2 \cdot 3 \cdot 5 \cdot 53} = 0.21572327044025158
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{108+5}{18}-\frac{5\times 15+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Whakareatia te 6 ki te 18, ka 108.
\frac{\frac{113}{18}-\frac{5\times 15+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Tāpirihia te 108 ki te 5, ka 113.
\frac{\frac{113}{18}-\frac{75+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Whakareatia te 5 ki te 15, ka 75.
\frac{\frac{113}{18}-\frac{86}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Tāpirihia te 75 ki te 11, ka 86.
\frac{\frac{565}{90}-\frac{516}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Ko te maha noa iti rawa atu o 18 me 15 ko 90. Me tahuri \frac{113}{18} me \frac{86}{15} ki te hautau me te tautūnga 90.
\frac{\frac{565-516}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Tā te mea he rite te tauraro o \frac{565}{90} me \frac{516}{90}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{49}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Tangohia te 516 i te 565, ka 49.
\frac{\frac{49}{90}}{\frac{14+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Whakareatia te 2 ki te 7, ka 14.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{8\times 3+2}{3}}{14}}
Tāpirihia te 14 ki te 2, ka 16.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{24+2}{3}}{14}}
Whakareatia te 8 ki te 3, ka 24.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{26}{3}}{14}}
Tāpirihia te 24 ki te 2, ka 26.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{36}{3}-\frac{26}{3}}{14}}
Me tahuri te 12 ki te hautau \frac{36}{3}.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{36-26}{3}}{14}}
Tā te mea he rite te tauraro o \frac{36}{3} me \frac{26}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{10}{3}}{14}}
Tangohia te 26 i te 36, ka 10.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{10}{3\times 14}}
Tuhia te \frac{\frac{10}{3}}{14} hei hautanga kotahi.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{10}{42}}
Whakareatia te 3 ki te 14, ka 42.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{5}{21}}
Whakahekea te hautanga \frac{10}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{49}{90}}{\frac{48}{21}+\frac{5}{21}}
Ko te maha noa iti rawa atu o 7 me 21 ko 21. Me tahuri \frac{16}{7} me \frac{5}{21} ki te hautau me te tautūnga 21.
\frac{\frac{49}{90}}{\frac{48+5}{21}}
Tā te mea he rite te tauraro o \frac{48}{21} me \frac{5}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{49}{90}}{\frac{53}{21}}
Tāpirihia te 48 ki te 5, ka 53.
\frac{49}{90}\times \frac{21}{53}
Whakawehe \frac{49}{90} ki te \frac{53}{21} mā te whakarea \frac{49}{90} ki te tau huripoki o \frac{53}{21}.
\frac{49\times 21}{90\times 53}
Me whakarea te \frac{49}{90} ki te \frac{21}{53} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1029}{4770}
Mahia ngā whakarea i roto i te hautanga \frac{49\times 21}{90\times 53}.
\frac{343}{1590}
Whakahekea te hautanga \frac{1029}{4770} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}