Whakaoti mō x
x = \frac{13}{5} = 2\frac{3}{5} = 2.6
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}-40x+16=81
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5x-4\right)^{2}.
25x^{2}-40x+16-81=0
Tangohia te 81 mai i ngā taha e rua.
25x^{2}-40x-65=0
Tangohia te 81 i te 16, ka -65.
5x^{2}-8x-13=0
Whakawehea ngā taha e rua ki te 5.
a+b=-8 ab=5\left(-13\right)=-65
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx-13. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-65 5,-13
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -65.
1-65=-64 5-13=-8
Tātaihia te tapeke mō ia takirua.
a=-13 b=5
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(5x^{2}-13x\right)+\left(5x-13\right)
Tuhia anō te 5x^{2}-8x-13 hei \left(5x^{2}-13x\right)+\left(5x-13\right).
x\left(5x-13\right)+5x-13
Whakatauwehea atu x i te 5x^{2}-13x.
\left(5x-13\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 5x-13 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{13}{5} x=-1
Hei kimi otinga whārite, me whakaoti te 5x-13=0 me te x+1=0.
25x^{2}-40x+16=81
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5x-4\right)^{2}.
25x^{2}-40x+16-81=0
Tangohia te 81 mai i ngā taha e rua.
25x^{2}-40x-65=0
Tangohia te 81 i te 16, ka -65.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 25\left(-65\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, -40 mō b, me -65 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 25\left(-65\right)}}{2\times 25}
Pūrua -40.
x=\frac{-\left(-40\right)±\sqrt{1600-100\left(-65\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-\left(-40\right)±\sqrt{1600+6500}}{2\times 25}
Whakareatia -100 ki te -65.
x=\frac{-\left(-40\right)±\sqrt{8100}}{2\times 25}
Tāpiri 1600 ki te 6500.
x=\frac{-\left(-40\right)±90}{2\times 25}
Tuhia te pūtakerua o te 8100.
x=\frac{40±90}{2\times 25}
Ko te tauaro o -40 ko 40.
x=\frac{40±90}{50}
Whakareatia 2 ki te 25.
x=\frac{130}{50}
Nā, me whakaoti te whārite x=\frac{40±90}{50} ina he tāpiri te ±. Tāpiri 40 ki te 90.
x=\frac{13}{5}
Whakahekea te hautanga \frac{130}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{50}{50}
Nā, me whakaoti te whārite x=\frac{40±90}{50} ina he tango te ±. Tango 90 mai i 40.
x=-1
Whakawehe -50 ki te 50.
x=\frac{13}{5} x=-1
Kua oti te whārite te whakatau.
25x^{2}-40x+16=81
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5x-4\right)^{2}.
25x^{2}-40x=81-16
Tangohia te 16 mai i ngā taha e rua.
25x^{2}-40x=65
Tangohia te 16 i te 81, ka 65.
\frac{25x^{2}-40x}{25}=\frac{65}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\left(-\frac{40}{25}\right)x=\frac{65}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}-\frac{8}{5}x=\frac{65}{25}
Whakahekea te hautanga \frac{-40}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{8}{5}x=\frac{13}{5}
Whakahekea te hautanga \frac{65}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=\frac{13}{5}+\left(-\frac{4}{5}\right)^{2}
Whakawehea te -\frac{8}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{5}. Nā, tāpiria te pūrua o te -\frac{4}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{13}{5}+\frac{16}{25}
Pūruatia -\frac{4}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{81}{25}
Tāpiri \frac{13}{5} ki te \frac{16}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{4}{5}\right)^{2}=\frac{81}{25}
Tauwehea x^{2}-\frac{8}{5}x+\frac{16}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{5}=\frac{9}{5} x-\frac{4}{5}=-\frac{9}{5}
Whakarūnātia.
x=\frac{13}{5} x=-1
Me tāpiri \frac{4}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}