Whakaoti mō x
x=-1
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}-20x+4-\left(2x-1\right)\left(2x+1\right)=47+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5x-2\right)^{2}.
25x^{2}-20x+4-\left(\left(2x\right)^{2}-1\right)=47+x
Whakaarohia te \left(2x-1\right)\left(2x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
25x^{2}-20x+4-\left(2^{2}x^{2}-1\right)=47+x
Whakarohaina te \left(2x\right)^{2}.
25x^{2}-20x+4-\left(4x^{2}-1\right)=47+x
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
25x^{2}-20x+4-4x^{2}+1=47+x
Hei kimi i te tauaro o 4x^{2}-1, kimihia te tauaro o ia taurangi.
21x^{2}-20x+4+1=47+x
Pahekotia te 25x^{2} me -4x^{2}, ka 21x^{2}.
21x^{2}-20x+5=47+x
Tāpirihia te 4 ki te 1, ka 5.
21x^{2}-20x+5-47=x
Tangohia te 47 mai i ngā taha e rua.
21x^{2}-20x-42=x
Tangohia te 47 i te 5, ka -42.
21x^{2}-20x-42-x=0
Tangohia te x mai i ngā taha e rua.
21x^{2}-21x-42=0
Pahekotia te -20x me -x, ka -21x.
x^{2}-x-2=0
Whakawehea ngā taha e rua ki te 21.
a+b=-1 ab=1\left(-2\right)=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-2 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-2x\right)+\left(x-2\right)
Tuhia anō te x^{2}-x-2 hei \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Whakatauwehea atu x i te x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-1
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+1=0.
25x^{2}-20x+4-\left(2x-1\right)\left(2x+1\right)=47+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5x-2\right)^{2}.
25x^{2}-20x+4-\left(\left(2x\right)^{2}-1\right)=47+x
Whakaarohia te \left(2x-1\right)\left(2x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
25x^{2}-20x+4-\left(2^{2}x^{2}-1\right)=47+x
Whakarohaina te \left(2x\right)^{2}.
25x^{2}-20x+4-\left(4x^{2}-1\right)=47+x
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
25x^{2}-20x+4-4x^{2}+1=47+x
Hei kimi i te tauaro o 4x^{2}-1, kimihia te tauaro o ia taurangi.
21x^{2}-20x+4+1=47+x
Pahekotia te 25x^{2} me -4x^{2}, ka 21x^{2}.
21x^{2}-20x+5=47+x
Tāpirihia te 4 ki te 1, ka 5.
21x^{2}-20x+5-47=x
Tangohia te 47 mai i ngā taha e rua.
21x^{2}-20x-42=x
Tangohia te 47 i te 5, ka -42.
21x^{2}-20x-42-x=0
Tangohia te x mai i ngā taha e rua.
21x^{2}-21x-42=0
Pahekotia te -20x me -x, ka -21x.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 21\left(-42\right)}}{2\times 21}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 21 mō a, -21 mō b, me -42 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 21\left(-42\right)}}{2\times 21}
Pūrua -21.
x=\frac{-\left(-21\right)±\sqrt{441-84\left(-42\right)}}{2\times 21}
Whakareatia -4 ki te 21.
x=\frac{-\left(-21\right)±\sqrt{441+3528}}{2\times 21}
Whakareatia -84 ki te -42.
x=\frac{-\left(-21\right)±\sqrt{3969}}{2\times 21}
Tāpiri 441 ki te 3528.
x=\frac{-\left(-21\right)±63}{2\times 21}
Tuhia te pūtakerua o te 3969.
x=\frac{21±63}{2\times 21}
Ko te tauaro o -21 ko 21.
x=\frac{21±63}{42}
Whakareatia 2 ki te 21.
x=\frac{84}{42}
Nā, me whakaoti te whārite x=\frac{21±63}{42} ina he tāpiri te ±. Tāpiri 21 ki te 63.
x=2
Whakawehe 84 ki te 42.
x=-\frac{42}{42}
Nā, me whakaoti te whārite x=\frac{21±63}{42} ina he tango te ±. Tango 63 mai i 21.
x=-1
Whakawehe -42 ki te 42.
x=2 x=-1
Kua oti te whārite te whakatau.
25x^{2}-20x+4-\left(2x-1\right)\left(2x+1\right)=47+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5x-2\right)^{2}.
25x^{2}-20x+4-\left(\left(2x\right)^{2}-1\right)=47+x
Whakaarohia te \left(2x-1\right)\left(2x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
25x^{2}-20x+4-\left(2^{2}x^{2}-1\right)=47+x
Whakarohaina te \left(2x\right)^{2}.
25x^{2}-20x+4-\left(4x^{2}-1\right)=47+x
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
25x^{2}-20x+4-4x^{2}+1=47+x
Hei kimi i te tauaro o 4x^{2}-1, kimihia te tauaro o ia taurangi.
21x^{2}-20x+4+1=47+x
Pahekotia te 25x^{2} me -4x^{2}, ka 21x^{2}.
21x^{2}-20x+5=47+x
Tāpirihia te 4 ki te 1, ka 5.
21x^{2}-20x+5-x=47
Tangohia te x mai i ngā taha e rua.
21x^{2}-21x+5=47
Pahekotia te -20x me -x, ka -21x.
21x^{2}-21x=47-5
Tangohia te 5 mai i ngā taha e rua.
21x^{2}-21x=42
Tangohia te 5 i te 47, ka 42.
\frac{21x^{2}-21x}{21}=\frac{42}{21}
Whakawehea ngā taha e rua ki te 21.
x^{2}+\left(-\frac{21}{21}\right)x=\frac{42}{21}
Mā te whakawehe ki te 21 ka wetekia te whakareanga ki te 21.
x^{2}-x=\frac{42}{21}
Whakawehe -21 ki te 21.
x^{2}-x=2
Whakawehe 42 ki te 21.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Tāpiri 2 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Whakarūnātia.
x=2 x=-1
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}