Aromātai
225y^{5}x^{9}
Whakaroha
225y^{5}x^{9}
Tohaina
Kua tāruatia ki te papatopenga
5^{2}\left(x^{2}\right)^{2}y^{2}\times \left(3xy\right)^{2}x^{3}y
Whakarohaina te \left(5x^{2}y\right)^{2}.
5^{2}x^{4}y^{2}\times \left(3xy\right)^{2}x^{3}y
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
25x^{4}y^{2}\times \left(3xy\right)^{2}x^{3}y
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{4}y^{2}\times 3^{2}x^{2}y^{2}x^{3}y
Whakarohaina te \left(3xy\right)^{2}.
25x^{4}y^{2}\times 9x^{2}y^{2}x^{3}y
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
225x^{4}y^{2}x^{2}y^{2}x^{3}y
Whakareatia te 25 ki te 9, ka 225.
225x^{6}y^{2}y^{2}x^{3}y
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 2 kia riro ai te 6.
225x^{6}y^{4}x^{3}y
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
225x^{9}y^{4}y
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 3 kia riro ai te 9.
225x^{9}y^{5}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 1 kia riro ai te 5.
5^{2}\left(x^{2}\right)^{2}y^{2}\times \left(3xy\right)^{2}x^{3}y
Whakarohaina te \left(5x^{2}y\right)^{2}.
5^{2}x^{4}y^{2}\times \left(3xy\right)^{2}x^{3}y
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
25x^{4}y^{2}\times \left(3xy\right)^{2}x^{3}y
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{4}y^{2}\times 3^{2}x^{2}y^{2}x^{3}y
Whakarohaina te \left(3xy\right)^{2}.
25x^{4}y^{2}\times 9x^{2}y^{2}x^{3}y
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
225x^{4}y^{2}x^{2}y^{2}x^{3}y
Whakareatia te 25 ki te 9, ka 225.
225x^{6}y^{2}y^{2}x^{3}y
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 2 kia riro ai te 6.
225x^{6}y^{4}x^{3}y
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
225x^{9}y^{4}y
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 3 kia riro ai te 9.
225x^{9}y^{5}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 1 kia riro ai te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}