Whakaoti mō x (complex solution)
x=-\frac{3}{5}+\frac{4}{5}i=-0.6+0.8i
x=-\frac{3}{5}-\frac{4}{5}i=-0.6-0.8i
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}+6x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\times 5\times 5}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 6 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 5\times 5}}{2\times 5}
Pūrua 6.
x=\frac{-6±\sqrt{36-20\times 5}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-6±\sqrt{36-100}}{2\times 5}
Whakareatia -20 ki te 5.
x=\frac{-6±\sqrt{-64}}{2\times 5}
Tāpiri 36 ki te -100.
x=\frac{-6±8i}{2\times 5}
Tuhia te pūtakerua o te -64.
x=\frac{-6±8i}{10}
Whakareatia 2 ki te 5.
x=\frac{-6+8i}{10}
Nā, me whakaoti te whārite x=\frac{-6±8i}{10} ina he tāpiri te ±. Tāpiri -6 ki te 8i.
x=-\frac{3}{5}+\frac{4}{5}i
Whakawehe -6+8i ki te 10.
x=\frac{-6-8i}{10}
Nā, me whakaoti te whārite x=\frac{-6±8i}{10} ina he tango te ±. Tango 8i mai i -6.
x=-\frac{3}{5}-\frac{4}{5}i
Whakawehe -6-8i ki te 10.
x=-\frac{3}{5}+\frac{4}{5}i x=-\frac{3}{5}-\frac{4}{5}i
Kua oti te whārite te whakatau.
5x^{2}+6x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+6x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
5x^{2}+6x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}+6x}{5}=-\frac{5}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{6}{5}x=-\frac{5}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{6}{5}x=-1
Whakawehe -5 ki te 5.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-1+\left(\frac{3}{5}\right)^{2}
Whakawehea te \frac{6}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{5}. Nā, tāpiria te pūrua o te \frac{3}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-1+\frac{9}{25}
Pūruatia \frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{16}{25}
Tāpiri -1 ki te \frac{9}{25}.
\left(x+\frac{3}{5}\right)^{2}=-\frac{16}{25}
Tauwehea x^{2}+\frac{6}{5}x+\frac{9}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{-\frac{16}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{5}=\frac{4}{5}i x+\frac{3}{5}=-\frac{4}{5}i
Whakarūnātia.
x=-\frac{3}{5}+\frac{4}{5}i x=-\frac{3}{5}-\frac{4}{5}i
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}