Whakaoti mō x
x=-\frac{2}{5}=-0.4
x = -\frac{14}{5} = -2\frac{4}{5} = -2.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}+80x+64=36
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+8\right)^{2}.
25x^{2}+80x+64-36=0
Tangohia te 36 mai i ngā taha e rua.
25x^{2}+80x+28=0
Tangohia te 36 i te 64, ka 28.
a+b=80 ab=25\times 28=700
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 25x^{2}+ax+bx+28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,700 2,350 4,175 5,140 7,100 10,70 14,50 20,35 25,28
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 700.
1+700=701 2+350=352 4+175=179 5+140=145 7+100=107 10+70=80 14+50=64 20+35=55 25+28=53
Tātaihia te tapeke mō ia takirua.
a=10 b=70
Ko te otinga te takirua ka hoatu i te tapeke 80.
\left(25x^{2}+10x\right)+\left(70x+28\right)
Tuhia anō te 25x^{2}+80x+28 hei \left(25x^{2}+10x\right)+\left(70x+28\right).
5x\left(5x+2\right)+14\left(5x+2\right)
Tauwehea te 5x i te tuatahi me te 14 i te rōpū tuarua.
\left(5x+2\right)\left(5x+14\right)
Whakatauwehea atu te kīanga pātahi 5x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{2}{5} x=-\frac{14}{5}
Hei kimi otinga whārite, me whakaoti te 5x+2=0 me te 5x+14=0.
25x^{2}+80x+64=36
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+8\right)^{2}.
25x^{2}+80x+64-36=0
Tangohia te 36 mai i ngā taha e rua.
25x^{2}+80x+28=0
Tangohia te 36 i te 64, ka 28.
x=\frac{-80±\sqrt{80^{2}-4\times 25\times 28}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 80 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\times 25\times 28}}{2\times 25}
Pūrua 80.
x=\frac{-80±\sqrt{6400-100\times 28}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-80±\sqrt{6400-2800}}{2\times 25}
Whakareatia -100 ki te 28.
x=\frac{-80±\sqrt{3600}}{2\times 25}
Tāpiri 6400 ki te -2800.
x=\frac{-80±60}{2\times 25}
Tuhia te pūtakerua o te 3600.
x=\frac{-80±60}{50}
Whakareatia 2 ki te 25.
x=-\frac{20}{50}
Nā, me whakaoti te whārite x=\frac{-80±60}{50} ina he tāpiri te ±. Tāpiri -80 ki te 60.
x=-\frac{2}{5}
Whakahekea te hautanga \frac{-20}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{140}{50}
Nā, me whakaoti te whārite x=\frac{-80±60}{50} ina he tango te ±. Tango 60 mai i -80.
x=-\frac{14}{5}
Whakahekea te hautanga \frac{-140}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{2}{5} x=-\frac{14}{5}
Kua oti te whārite te whakatau.
25x^{2}+80x+64=36
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+8\right)^{2}.
25x^{2}+80x=36-64
Tangohia te 64 mai i ngā taha e rua.
25x^{2}+80x=-28
Tangohia te 64 i te 36, ka -28.
\frac{25x^{2}+80x}{25}=-\frac{28}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\frac{80}{25}x=-\frac{28}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}+\frac{16}{5}x=-\frac{28}{25}
Whakahekea te hautanga \frac{80}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}+\frac{16}{5}x+\left(\frac{8}{5}\right)^{2}=-\frac{28}{25}+\left(\frac{8}{5}\right)^{2}
Whakawehea te \frac{16}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{8}{5}. Nā, tāpiria te pūrua o te \frac{8}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{-28+64}{25}
Pūruatia \frac{8}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{36}{25}
Tāpiri -\frac{28}{25} ki te \frac{64}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{8}{5}\right)^{2}=\frac{36}{25}
Tauwehea x^{2}+\frac{16}{5}x+\frac{64}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{5}\right)^{2}}=\sqrt{\frac{36}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{8}{5}=\frac{6}{5} x+\frac{8}{5}=-\frac{6}{5}
Whakarūnātia.
x=-\frac{2}{5} x=-\frac{14}{5}
Me tango \frac{8}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}