Whakaoti mō x
x=-\frac{3}{5}=-0.6
x = -\frac{11}{5} = -2\frac{1}{5} = -2.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}+70x+49=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+7\right)^{2}.
25x^{2}+70x+49-16=0
Tangohia te 16 mai i ngā taha e rua.
25x^{2}+70x+33=0
Tangohia te 16 i te 49, ka 33.
a+b=70 ab=25\times 33=825
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 25x^{2}+ax+bx+33. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,825 3,275 5,165 11,75 15,55 25,33
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 825.
1+825=826 3+275=278 5+165=170 11+75=86 15+55=70 25+33=58
Tātaihia te tapeke mō ia takirua.
a=15 b=55
Ko te otinga te takirua ka hoatu i te tapeke 70.
\left(25x^{2}+15x\right)+\left(55x+33\right)
Tuhia anō te 25x^{2}+70x+33 hei \left(25x^{2}+15x\right)+\left(55x+33\right).
5x\left(5x+3\right)+11\left(5x+3\right)
Tauwehea te 5x i te tuatahi me te 11 i te rōpū tuarua.
\left(5x+3\right)\left(5x+11\right)
Whakatauwehea atu te kīanga pātahi 5x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{3}{5} x=-\frac{11}{5}
Hei kimi otinga whārite, me whakaoti te 5x+3=0 me te 5x+11=0.
25x^{2}+70x+49=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+7\right)^{2}.
25x^{2}+70x+49-16=0
Tangohia te 16 mai i ngā taha e rua.
25x^{2}+70x+33=0
Tangohia te 16 i te 49, ka 33.
x=\frac{-70±\sqrt{70^{2}-4\times 25\times 33}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 70 mō b, me 33 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-70±\sqrt{4900-4\times 25\times 33}}{2\times 25}
Pūrua 70.
x=\frac{-70±\sqrt{4900-100\times 33}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-70±\sqrt{4900-3300}}{2\times 25}
Whakareatia -100 ki te 33.
x=\frac{-70±\sqrt{1600}}{2\times 25}
Tāpiri 4900 ki te -3300.
x=\frac{-70±40}{2\times 25}
Tuhia te pūtakerua o te 1600.
x=\frac{-70±40}{50}
Whakareatia 2 ki te 25.
x=-\frac{30}{50}
Nā, me whakaoti te whārite x=\frac{-70±40}{50} ina he tāpiri te ±. Tāpiri -70 ki te 40.
x=-\frac{3}{5}
Whakahekea te hautanga \frac{-30}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{110}{50}
Nā, me whakaoti te whārite x=\frac{-70±40}{50} ina he tango te ±. Tango 40 mai i -70.
x=-\frac{11}{5}
Whakahekea te hautanga \frac{-110}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{3}{5} x=-\frac{11}{5}
Kua oti te whārite te whakatau.
25x^{2}+70x+49=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+7\right)^{2}.
25x^{2}+70x=16-49
Tangohia te 49 mai i ngā taha e rua.
25x^{2}+70x=-33
Tangohia te 49 i te 16, ka -33.
\frac{25x^{2}+70x}{25}=-\frac{33}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\frac{70}{25}x=-\frac{33}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}+\frac{14}{5}x=-\frac{33}{25}
Whakahekea te hautanga \frac{70}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}+\frac{14}{5}x+\left(\frac{7}{5}\right)^{2}=-\frac{33}{25}+\left(\frac{7}{5}\right)^{2}
Whakawehea te \frac{14}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{5}. Nā, tāpiria te pūrua o te \frac{7}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{14}{5}x+\frac{49}{25}=\frac{-33+49}{25}
Pūruatia \frac{7}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{14}{5}x+\frac{49}{25}=\frac{16}{25}
Tāpiri -\frac{33}{25} ki te \frac{49}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{5}\right)^{2}=\frac{16}{25}
Tauwehea x^{2}+\frac{14}{5}x+\frac{49}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{5}=\frac{4}{5} x+\frac{7}{5}=-\frac{4}{5}
Whakarūnātia.
x=-\frac{3}{5} x=-\frac{11}{5}
Me tango \frac{7}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}