Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(5x\right)^{2}-1=1
Whakaarohia te \left(5x+1\right)\left(5x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
5^{2}x^{2}-1=1
Whakarohaina te \left(5x\right)^{2}.
25x^{2}-1=1
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{2}=1+1
Me tāpiri te 1 ki ngā taha e rua.
25x^{2}=2
Tāpirihia te 1 ki te 1, ka 2.
x^{2}=\frac{2}{25}
Whakawehea ngā taha e rua ki te 25.
x=\frac{\sqrt{2}}{5} x=-\frac{\sqrt{2}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(5x\right)^{2}-1=1
Whakaarohia te \left(5x+1\right)\left(5x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
5^{2}x^{2}-1=1
Whakarohaina te \left(5x\right)^{2}.
25x^{2}-1=1
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{2}-1-1=0
Tangohia te 1 mai i ngā taha e rua.
25x^{2}-2=0
Tangohia te 1 i te -1, ka -2.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-2\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 0 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\left(-2\right)}}{2\times 25}
Pūrua 0.
x=\frac{0±\sqrt{-100\left(-2\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{0±\sqrt{200}}{2\times 25}
Whakareatia -100 ki te -2.
x=\frac{0±10\sqrt{2}}{2\times 25}
Tuhia te pūtakerua o te 200.
x=\frac{0±10\sqrt{2}}{50}
Whakareatia 2 ki te 25.
x=\frac{\sqrt{2}}{5}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{2}}{50} ina he tāpiri te ±.
x=-\frac{\sqrt{2}}{5}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{2}}{50} ina he tango te ±.
x=\frac{\sqrt{2}}{5} x=-\frac{\sqrt{2}}{5}
Kua oti te whārite te whakatau.