Whakaoti mō x
x=\frac{\sqrt{2}}{5}\approx 0.282842712
x=-\frac{\sqrt{2}}{5}\approx -0.282842712
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(5x\right)^{2}-1=1
Whakaarohia te \left(5x+1\right)\left(5x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
5^{2}x^{2}-1=1
Whakarohaina te \left(5x\right)^{2}.
25x^{2}-1=1
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{2}=1+1
Me tāpiri te 1 ki ngā taha e rua.
25x^{2}=2
Tāpirihia te 1 ki te 1, ka 2.
x^{2}=\frac{2}{25}
Whakawehea ngā taha e rua ki te 25.
x=\frac{\sqrt{2}}{5} x=-\frac{\sqrt{2}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(5x\right)^{2}-1=1
Whakaarohia te \left(5x+1\right)\left(5x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
5^{2}x^{2}-1=1
Whakarohaina te \left(5x\right)^{2}.
25x^{2}-1=1
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{2}-1-1=0
Tangohia te 1 mai i ngā taha e rua.
25x^{2}-2=0
Tangohia te 1 i te -1, ka -2.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-2\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 0 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\left(-2\right)}}{2\times 25}
Pūrua 0.
x=\frac{0±\sqrt{-100\left(-2\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{0±\sqrt{200}}{2\times 25}
Whakareatia -100 ki te -2.
x=\frac{0±10\sqrt{2}}{2\times 25}
Tuhia te pūtakerua o te 200.
x=\frac{0±10\sqrt{2}}{50}
Whakareatia 2 ki te 25.
x=\frac{\sqrt{2}}{5}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{2}}{50} ina he tāpiri te ±.
x=-\frac{\sqrt{2}}{5}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{2}}{50} ina he tango te ±.
x=\frac{\sqrt{2}}{5} x=-\frac{\sqrt{2}}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}