Aromātai
25n^{2}-5n+\frac{4}{25}
Whakaroha
25n^{2}-5n+\frac{4}{25}
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( 5 n - \frac { 4 } { 5 } ) ( 5 n - \frac { 1 } { 5 } )
Tohaina
Kua tāruatia ki te papatopenga
25n^{2}+5n\left(-\frac{1}{5}\right)-\frac{4}{5}\times 5n-\frac{4}{5}\left(-\frac{1}{5}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 5n-\frac{4}{5} ki ia tau o 5n-\frac{1}{5}.
25n^{2}-n-\frac{4}{5}\times 5n-\frac{4}{5}\left(-\frac{1}{5}\right)
Me whakakore te 5 me te 5.
25n^{2}-n-4n-\frac{4}{5}\left(-\frac{1}{5}\right)
Me whakakore te 5 me te 5.
25n^{2}-5n-\frac{4}{5}\left(-\frac{1}{5}\right)
Pahekotia te -n me -4n, ka -5n.
25n^{2}-5n+\frac{-4\left(-1\right)}{5\times 5}
Me whakarea te -\frac{4}{5} ki te -\frac{1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
25n^{2}-5n+\frac{4}{25}
Mahia ngā whakarea i roto i te hautanga \frac{-4\left(-1\right)}{5\times 5}.
25n^{2}+5n\left(-\frac{1}{5}\right)-\frac{4}{5}\times 5n-\frac{4}{5}\left(-\frac{1}{5}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 5n-\frac{4}{5} ki ia tau o 5n-\frac{1}{5}.
25n^{2}-n-\frac{4}{5}\times 5n-\frac{4}{5}\left(-\frac{1}{5}\right)
Me whakakore te 5 me te 5.
25n^{2}-n-4n-\frac{4}{5}\left(-\frac{1}{5}\right)
Me whakakore te 5 me te 5.
25n^{2}-5n-\frac{4}{5}\left(-\frac{1}{5}\right)
Pahekotia te -n me -4n, ka -5n.
25n^{2}-5n+\frac{-4\left(-1\right)}{5\times 5}
Me whakarea te -\frac{4}{5} ki te -\frac{1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
25n^{2}-5n+\frac{4}{25}
Mahia ngā whakarea i roto i te hautanga \frac{-4\left(-1\right)}{5\times 5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}