( 5 n = n ^ { 2 } - n - 1 )
Whakaoti mō n
n=\sqrt{10}+3\approx 6.16227766
n=3-\sqrt{10}\approx -0.16227766
Tohaina
Kua tāruatia ki te papatopenga
5n-n^{2}=-n-1
Tangohia te n^{2} mai i ngā taha e rua.
5n-n^{2}+n=-1
Me tāpiri te n ki ngā taha e rua.
6n-n^{2}=-1
Pahekotia te 5n me n, ka 6n.
6n-n^{2}+1=0
Me tāpiri te 1 ki ngā taha e rua.
-n^{2}+6n+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-6±\sqrt{6^{2}-4\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 6 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-6±\sqrt{36-4\left(-1\right)}}{2\left(-1\right)}
Pūrua 6.
n=\frac{-6±\sqrt{36+4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
n=\frac{-6±\sqrt{40}}{2\left(-1\right)}
Tāpiri 36 ki te 4.
n=\frac{-6±2\sqrt{10}}{2\left(-1\right)}
Tuhia te pūtakerua o te 40.
n=\frac{-6±2\sqrt{10}}{-2}
Whakareatia 2 ki te -1.
n=\frac{2\sqrt{10}-6}{-2}
Nā, me whakaoti te whārite n=\frac{-6±2\sqrt{10}}{-2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{10}.
n=3-\sqrt{10}
Whakawehe -6+2\sqrt{10} ki te -2.
n=\frac{-2\sqrt{10}-6}{-2}
Nā, me whakaoti te whārite n=\frac{-6±2\sqrt{10}}{-2} ina he tango te ±. Tango 2\sqrt{10} mai i -6.
n=\sqrt{10}+3
Whakawehe -6-2\sqrt{10} ki te -2.
n=3-\sqrt{10} n=\sqrt{10}+3
Kua oti te whārite te whakatau.
5n-n^{2}=-n-1
Tangohia te n^{2} mai i ngā taha e rua.
5n-n^{2}+n=-1
Me tāpiri te n ki ngā taha e rua.
6n-n^{2}=-1
Pahekotia te 5n me n, ka 6n.
-n^{2}+6n=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-n^{2}+6n}{-1}=-\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.
n^{2}+\frac{6}{-1}n=-\frac{1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
n^{2}-6n=-\frac{1}{-1}
Whakawehe 6 ki te -1.
n^{2}-6n=1
Whakawehe -1 ki te -1.
n^{2}-6n+\left(-3\right)^{2}=1+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-6n+9=1+9
Pūrua -3.
n^{2}-6n+9=10
Tāpiri 1 ki te 9.
\left(n-3\right)^{2}=10
Tauwehea n^{2}-6n+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-3\right)^{2}}=\sqrt{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-3=\sqrt{10} n-3=-\sqrt{10}
Whakarūnātia.
n=\sqrt{10}+3 n=3-\sqrt{10}
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}