Aromātai
125a^{3}+\frac{a}{5}
Whakaroha
125a^{3}+\frac{a}{5}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
( 5 a ) ^ { 3 } + 5 a ^ { - 1 } \times 5 ^ { - 2 } a ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
\left(5a\right)^{3}+5^{-1}a^{-1}a^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te -2 kia riro ai te -1.
\left(5a\right)^{3}+5^{-1}a^{1}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -1 me te 2 kia riro ai te 1.
5^{3}a^{3}+5^{-1}a^{1}
Whakarohaina te \left(5a\right)^{3}.
125a^{3}+5^{-1}a^{1}
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
125a^{3}+\frac{1}{5}a^{1}
Tātaihia te 5 mā te pū o -1, kia riro ko \frac{1}{5}.
125a^{3}+\frac{1}{5}a
Tātaihia te a mā te pū o 1, kia riro ko a.
\left(5a\right)^{3}+5^{-1}a^{-1}a^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te -2 kia riro ai te -1.
\left(5a\right)^{3}+5^{-1}a^{1}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -1 me te 2 kia riro ai te 1.
5^{3}a^{3}+5^{-1}a^{1}
Whakarohaina te \left(5a\right)^{3}.
125a^{3}+5^{-1}a^{1}
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
125a^{3}+\frac{1}{5}a^{1}
Tātaihia te 5 mā te pū o -1, kia riro ko \frac{1}{5}.
125a^{3}+\frac{1}{5}a
Tātaihia te a mā te pū o 1, kia riro ko a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}