Aromātai
2\left(x-5\right)\left(x-2\right)
Whakaroha
2x^{2}-14x+20
Graph
Tohaina
Kua tāruatia ki te papatopenga
25-x^{2}+\left(x-5\right)^{2}+\left(2x-10\right)\left(x+3\right)
Whakaarohia te \left(5-x\right)\left(5+x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 5.
25-x^{2}+x^{2}-10x+25+\left(2x-10\right)\left(x+3\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
25-10x+25+\left(2x-10\right)\left(x+3\right)
Pahekotia te -x^{2} me x^{2}, ka 0.
50-10x+\left(2x-10\right)\left(x+3\right)
Tāpirihia te 25 ki te 25, ka 50.
50-10x+2x^{2}-4x-30
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-10 ki te x+3 ka whakakotahi i ngā kupu rite.
50-14x+2x^{2}-30
Pahekotia te -10x me -4x, ka -14x.
20-14x+2x^{2}
Tangohia te 30 i te 50, ka 20.
25-x^{2}+\left(x-5\right)^{2}+\left(2x-10\right)\left(x+3\right)
Whakaarohia te \left(5-x\right)\left(5+x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 5.
25-x^{2}+x^{2}-10x+25+\left(2x-10\right)\left(x+3\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
25-10x+25+\left(2x-10\right)\left(x+3\right)
Pahekotia te -x^{2} me x^{2}, ka 0.
50-10x+\left(2x-10\right)\left(x+3\right)
Tāpirihia te 25 ki te 25, ka 50.
50-10x+2x^{2}-4x-30
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-10 ki te x+3 ka whakakotahi i ngā kupu rite.
50-14x+2x^{2}-30
Pahekotia te -10x me -4x, ka -14x.
20-14x+2x^{2}
Tangohia te 30 i te 50, ka 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}