Whakaoti mō d
d = \frac{25}{14} = 1\frac{11}{14} \approx 1.785714286
d=0
Tohaina
Kua tāruatia ki te papatopenga
25+45d-10d^{2}=\left(5+2d\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 5-d ki te 5+10d ka whakakotahi i ngā kupu rite.
25+45d-10d^{2}=25+20d+4d^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5+2d\right)^{2}.
25+45d-10d^{2}-25=20d+4d^{2}
Tangohia te 25 mai i ngā taha e rua.
45d-10d^{2}=20d+4d^{2}
Tangohia te 25 i te 25, ka 0.
45d-10d^{2}-20d=4d^{2}
Tangohia te 20d mai i ngā taha e rua.
25d-10d^{2}=4d^{2}
Pahekotia te 45d me -20d, ka 25d.
25d-10d^{2}-4d^{2}=0
Tangohia te 4d^{2} mai i ngā taha e rua.
25d-14d^{2}=0
Pahekotia te -10d^{2} me -4d^{2}, ka -14d^{2}.
d\left(25-14d\right)=0
Tauwehea te d.
d=0 d=\frac{25}{14}
Hei kimi otinga whārite, me whakaoti te d=0 me te 25-14d=0.
25+45d-10d^{2}=\left(5+2d\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 5-d ki te 5+10d ka whakakotahi i ngā kupu rite.
25+45d-10d^{2}=25+20d+4d^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5+2d\right)^{2}.
25+45d-10d^{2}-25=20d+4d^{2}
Tangohia te 25 mai i ngā taha e rua.
45d-10d^{2}=20d+4d^{2}
Tangohia te 25 i te 25, ka 0.
45d-10d^{2}-20d=4d^{2}
Tangohia te 20d mai i ngā taha e rua.
25d-10d^{2}=4d^{2}
Pahekotia te 45d me -20d, ka 25d.
25d-10d^{2}-4d^{2}=0
Tangohia te 4d^{2} mai i ngā taha e rua.
25d-14d^{2}=0
Pahekotia te -10d^{2} me -4d^{2}, ka -14d^{2}.
-14d^{2}+25d=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
d=\frac{-25±\sqrt{25^{2}}}{2\left(-14\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -14 mō a, 25 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-25±25}{2\left(-14\right)}
Tuhia te pūtakerua o te 25^{2}.
d=\frac{-25±25}{-28}
Whakareatia 2 ki te -14.
d=\frac{0}{-28}
Nā, me whakaoti te whārite d=\frac{-25±25}{-28} ina he tāpiri te ±. Tāpiri -25 ki te 25.
d=0
Whakawehe 0 ki te -28.
d=-\frac{50}{-28}
Nā, me whakaoti te whārite d=\frac{-25±25}{-28} ina he tango te ±. Tango 25 mai i -25.
d=\frac{25}{14}
Whakahekea te hautanga \frac{-50}{-28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
d=0 d=\frac{25}{14}
Kua oti te whārite te whakatau.
25+45d-10d^{2}=\left(5+2d\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 5-d ki te 5+10d ka whakakotahi i ngā kupu rite.
25+45d-10d^{2}=25+20d+4d^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5+2d\right)^{2}.
25+45d-10d^{2}-20d=25+4d^{2}
Tangohia te 20d mai i ngā taha e rua.
25+25d-10d^{2}=25+4d^{2}
Pahekotia te 45d me -20d, ka 25d.
25+25d-10d^{2}-4d^{2}=25
Tangohia te 4d^{2} mai i ngā taha e rua.
25+25d-14d^{2}=25
Pahekotia te -10d^{2} me -4d^{2}, ka -14d^{2}.
25d-14d^{2}=25-25
Tangohia te 25 mai i ngā taha e rua.
25d-14d^{2}=0
Tangohia te 25 i te 25, ka 0.
-14d^{2}+25d=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-14d^{2}+25d}{-14}=\frac{0}{-14}
Whakawehea ngā taha e rua ki te -14.
d^{2}+\frac{25}{-14}d=\frac{0}{-14}
Mā te whakawehe ki te -14 ka wetekia te whakareanga ki te -14.
d^{2}-\frac{25}{14}d=\frac{0}{-14}
Whakawehe 25 ki te -14.
d^{2}-\frac{25}{14}d=0
Whakawehe 0 ki te -14.
d^{2}-\frac{25}{14}d+\left(-\frac{25}{28}\right)^{2}=\left(-\frac{25}{28}\right)^{2}
Whakawehea te -\frac{25}{14}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{25}{28}. Nā, tāpiria te pūrua o te -\frac{25}{28} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
d^{2}-\frac{25}{14}d+\frac{625}{784}=\frac{625}{784}
Pūruatia -\frac{25}{28} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(d-\frac{25}{28}\right)^{2}=\frac{625}{784}
Tauwehea d^{2}-\frac{25}{14}d+\frac{625}{784}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{25}{28}\right)^{2}}=\sqrt{\frac{625}{784}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
d-\frac{25}{28}=\frac{25}{28} d-\frac{25}{28}=-\frac{25}{28}
Whakarūnātia.
d=\frac{25}{14} d=0
Me tāpiri \frac{25}{28} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}