Whakaoti mō f
f=-\frac{\sqrt{2}e^{2}}{2}+2e+18\sqrt{2}\approx 25.667556106
Tohaina
Kua tāruatia ki te papatopenga
15\left(\sqrt{2}\right)^{2}+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 5\sqrt{2}-e ki ia tau o 3\sqrt{2}+e.
15\times 2+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
Ko te pūrua o \sqrt{2} ko 2.
30+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
Whakareatia te 15 ki te 2, ka 30.
30+2\sqrt{2}e-e^{2}=f\sqrt{2}-6
Pahekotia te 5\sqrt{2}e me -3e\sqrt{2}, ka 2\sqrt{2}e.
f\sqrt{2}-6=30+2\sqrt{2}e-e^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
f\sqrt{2}=30+2\sqrt{2}e-e^{2}+6
Me tāpiri te 6 ki ngā taha e rua.
f\sqrt{2}=36+2\sqrt{2}e-e^{2}
Tāpirihia te 30 ki te 6, ka 36.
\sqrt{2}f=2e\sqrt{2}-e^{2}+36
He hanga arowhānui tō te whārite.
\frac{\sqrt{2}f}{\sqrt{2}}=\frac{2e\sqrt{2}-e^{2}+36}{\sqrt{2}}
Whakawehea ngā taha e rua ki te \sqrt{2}.
f=\frac{2e\sqrt{2}-e^{2}+36}{\sqrt{2}}
Mā te whakawehe ki te \sqrt{2} ka wetekia te whakareanga ki te \sqrt{2}.
f=\frac{\sqrt{2}\left(2e\sqrt{2}-e^{2}+36\right)}{2}
Whakawehe 36+2e\sqrt{2}-e^{2} ki te \sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}