Tīpoka ki ngā ihirangi matua
Whakaoti mō f
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

15\left(\sqrt{2}\right)^{2}+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 5\sqrt{2}-e ki ia tau o 3\sqrt{2}+e.
15\times 2+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
Ko te pūrua o \sqrt{2} ko 2.
30+5\sqrt{2}e-3e\sqrt{2}-e^{2}=f\sqrt{2}-6
Whakareatia te 15 ki te 2, ka 30.
30+2\sqrt{2}e-e^{2}=f\sqrt{2}-6
Pahekotia te 5\sqrt{2}e me -3e\sqrt{2}, ka 2\sqrt{2}e.
f\sqrt{2}-6=30+2\sqrt{2}e-e^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
f\sqrt{2}=30+2\sqrt{2}e-e^{2}+6
Me tāpiri te 6 ki ngā taha e rua.
f\sqrt{2}=36+2\sqrt{2}e-e^{2}
Tāpirihia te 30 ki te 6, ka 36.
\sqrt{2}f=2e\sqrt{2}-e^{2}+36
He hanga arowhānui tō te whārite.
\frac{\sqrt{2}f}{\sqrt{2}}=\frac{2e\sqrt{2}-e^{2}+36}{\sqrt{2}}
Whakawehea ngā taha e rua ki te \sqrt{2}.
f=\frac{2e\sqrt{2}-e^{2}+36}{\sqrt{2}}
Mā te whakawehe ki te \sqrt{2} ka wetekia te whakareanga ki te \sqrt{2}.
f=\frac{\sqrt{2}\left(2e\sqrt{2}-e^{2}+36\right)}{2}
Whakawehe 36+2e\sqrt{2}-e^{2} ki te \sqrt{2}.