Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5\left(\sqrt{2}\right)^{2}-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 5\sqrt{2}+\sqrt{3} ki ia tau o \sqrt{2}-2\sqrt{3}.
5\times 2-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
10-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Whakareatia te 5 ki te 2, ka 10.
10-10\sqrt{6}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
10-10\sqrt{6}+\sqrt{6}-2\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
10-9\sqrt{6}-2\left(\sqrt{3}\right)^{2}
Pahekotia te -10\sqrt{6} me \sqrt{6}, ka -9\sqrt{6}.
10-9\sqrt{6}-2\times 3
Ko te pūrua o \sqrt{3} ko 3.
10-9\sqrt{6}-6
Whakareatia te -2 ki te 3, ka -6.
4-9\sqrt{6}
Tangohia te 6 i te 10, ka 4.