Aromātai
4-9\sqrt{6}\approx -18.045407685
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( 5 \sqrt { 2 } + \sqrt { 3 } ) ( \sqrt { 2 } - 2 \sqrt { 3 } )
Tohaina
Kua tāruatia ki te papatopenga
5\left(\sqrt{2}\right)^{2}-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 5\sqrt{2}+\sqrt{3} ki ia tau o \sqrt{2}-2\sqrt{3}.
5\times 2-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
10-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Whakareatia te 5 ki te 2, ka 10.
10-10\sqrt{6}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
10-10\sqrt{6}+\sqrt{6}-2\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
10-9\sqrt{6}-2\left(\sqrt{3}\right)^{2}
Pahekotia te -10\sqrt{6} me \sqrt{6}, ka -9\sqrt{6}.
10-9\sqrt{6}-2\times 3
Ko te pūrua o \sqrt{3} ko 3.
10-9\sqrt{6}-6
Whakareatia te -2 ki te 3, ka -6.
4-9\sqrt{6}
Tangohia te 6 i te 10, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}