Aromātai
\frac{2737}{48}\approx 57.020833333
Tauwehe
\frac{7 \cdot 17 \cdot 23}{2 ^ {4} \cdot 3} = 57\frac{1}{48} = 57.020833333333336
Tohaina
Kua tāruatia ki te papatopenga
\frac{20+3}{4}\times \frac{2\times 6+5}{6}\times \frac{3\times 4+2}{4}
Whakareatia te 5 ki te 4, ka 20.
\frac{23}{4}\times \frac{2\times 6+5}{6}\times \frac{3\times 4+2}{4}
Tāpirihia te 20 ki te 3, ka 23.
\frac{23}{4}\times \frac{12+5}{6}\times \frac{3\times 4+2}{4}
Whakareatia te 2 ki te 6, ka 12.
\frac{23}{4}\times \frac{17}{6}\times \frac{3\times 4+2}{4}
Tāpirihia te 12 ki te 5, ka 17.
\frac{23\times 17}{4\times 6}\times \frac{3\times 4+2}{4}
Me whakarea te \frac{23}{4} ki te \frac{17}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{391}{24}\times \frac{3\times 4+2}{4}
Mahia ngā whakarea i roto i te hautanga \frac{23\times 17}{4\times 6}.
\frac{391}{24}\times \frac{12+2}{4}
Whakareatia te 3 ki te 4, ka 12.
\frac{391}{24}\times \frac{14}{4}
Tāpirihia te 12 ki te 2, ka 14.
\frac{391}{24}\times \frac{7}{2}
Whakahekea te hautanga \frac{14}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{391\times 7}{24\times 2}
Me whakarea te \frac{391}{24} ki te \frac{7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2737}{48}
Mahia ngā whakarea i roto i te hautanga \frac{391\times 7}{24\times 2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}