Aromātai
\frac{648}{475}\approx 1.364210526
Tauwehe
\frac{2 ^ {3} \cdot 3 ^ {4}}{19 \cdot 5 ^ {2}} = 1\frac{173}{475} = 1.3642105263157895
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{25+2}{5}-1.8}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Whakareatia te 5 ki te 5, ka 25.
\frac{\frac{27}{5}-1.8}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Tāpirihia te 25 ki te 2, ka 27.
\frac{\frac{27}{5}-\frac{9}{5}}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Me tahuri ki tau ā-ira 1.8 ki te hautau \frac{18}{10}. Whakahekea te hautanga \frac{18}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{27-9}{5}}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Tā te mea he rite te tauraro o \frac{27}{5} me \frac{9}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{18}{5}}{\left(1.15+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Tangohia te 9 i te 27, ka 18.
\frac{\frac{18}{5}}{\left(\frac{23}{20}+\frac{13}{30}\right)\times \frac{1\times 3+2}{3}}
Me tahuri ki tau ā-ira 1.15 ki te hautau \frac{115}{100}. Whakahekea te hautanga \frac{115}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{18}{5}}{\left(\frac{69}{60}+\frac{26}{60}\right)\times \frac{1\times 3+2}{3}}
Ko te maha noa iti rawa atu o 20 me 30 ko 60. Me tahuri \frac{23}{20} me \frac{13}{30} ki te hautau me te tautūnga 60.
\frac{\frac{18}{5}}{\frac{69+26}{60}\times \frac{1\times 3+2}{3}}
Tā te mea he rite te tauraro o \frac{69}{60} me \frac{26}{60}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{18}{5}}{\frac{95}{60}\times \frac{1\times 3+2}{3}}
Tāpirihia te 69 ki te 26, ka 95.
\frac{\frac{18}{5}}{\frac{19}{12}\times \frac{1\times 3+2}{3}}
Whakahekea te hautanga \frac{95}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{18}{5}}{\frac{19}{12}\times \frac{3+2}{3}}
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{18}{5}}{\frac{19}{12}\times \frac{5}{3}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{18}{5}}{\frac{19\times 5}{12\times 3}}
Me whakarea te \frac{19}{12} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{18}{5}}{\frac{95}{36}}
Mahia ngā whakarea i roto i te hautanga \frac{19\times 5}{12\times 3}.
\frac{18}{5}\times \frac{36}{95}
Whakawehe \frac{18}{5} ki te \frac{95}{36} mā te whakarea \frac{18}{5} ki te tau huripoki o \frac{95}{36}.
\frac{18\times 36}{5\times 95}
Me whakarea te \frac{18}{5} ki te \frac{36}{95} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{648}{475}
Mahia ngā whakarea i roto i te hautanga \frac{18\times 36}{5\times 95}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}