Whakaoti mō x
x = \frac{148}{3} = 49\frac{1}{3} \approx 49.333333333
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
( 5 \frac { 1 } { 3 } - x ) : 2 = 7 \cdot ( - 2 ) - 8
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\times 3+1}{3}-x=14\left(-2\right)-16
Whakareatia ngā taha e rua o te whārite ki te 2.
\frac{15+1}{3}-x=14\left(-2\right)-16
Whakareatia te 5 ki te 3, ka 15.
\frac{16}{3}-x=14\left(-2\right)-16
Tāpirihia te 15 ki te 1, ka 16.
\frac{16}{3}-x=-28-16
Whakareatia te 14 ki te -2, ka -28.
\frac{16}{3}-x=-44
Tangohia te 16 i te -28, ka -44.
-x=-44-\frac{16}{3}
Tangohia te \frac{16}{3} mai i ngā taha e rua.
-x=-\frac{132}{3}-\frac{16}{3}
Me tahuri te -44 ki te hautau -\frac{132}{3}.
-x=\frac{-132-16}{3}
Tā te mea he rite te tauraro o -\frac{132}{3} me \frac{16}{3}, me tango rāua mā te tango i ō raua taurunga.
-x=-\frac{148}{3}
Tangohia te 16 i te -132, ka -148.
x=\frac{148}{3}
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}