Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

49^{-\frac{3}{2}}\left(x^{3}\right)^{-\frac{3}{2}}
Whakarohaina te \left(49x^{3}\right)^{-\frac{3}{2}}.
49^{-\frac{3}{2}}x^{-\frac{9}{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -\frac{3}{2} kia riro ai te -\frac{9}{2}.
\frac{1}{343}x^{-\frac{9}{2}}
Tātaihia te 49 mā te pū o -\frac{3}{2}, kia riro ko \frac{1}{343}.
-\frac{3}{2}\times \left(49x^{3}\right)^{-\frac{3}{2}-1}\frac{\mathrm{d}}{\mathrm{d}x}(49x^{3})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{3}{2}\times \left(49x^{3}\right)^{-\frac{5}{2}}\times 3\times 49x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{441}{2}x^{2}\times \left(49x^{3}\right)^{-\frac{5}{2}}
Whakarūnātia.