Whakaoti mō x
x = \frac{89}{4} = 22\frac{1}{4} = 22.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(45-2x\right)\left(1\times 7+4\right)=11
Me whakarea ngā taha e rua o te whārite ki te 14, arā, te tauraro pātahi he tino iti rawa te kitea o 7,14.
2\left(45-2x\right)\left(7+4\right)=11
Whakareatia te 1 ki te 7, ka 7.
2\left(45-2x\right)\times 11=11
Tāpirihia te 7 ki te 4, ka 11.
22\left(45-2x\right)=11
Whakareatia te 2 ki te 11, ka 22.
990-44x=11
Whakamahia te āhuatanga tohatoha hei whakarea te 22 ki te 45-2x.
-44x=11-990
Tangohia te 990 mai i ngā taha e rua.
-44x=-979
Tangohia te 990 i te 11, ka -979.
x=\frac{-979}{-44}
Whakawehea ngā taha e rua ki te -44.
x=\frac{89}{4}
Whakahekea te hautanga \frac{-979}{-44} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}