Whakaoti mō m
m=\sqrt{565}+15\approx 38.769728648
m=15-\sqrt{565}\approx -8.769728648
Tohaina
Kua tāruatia ki te papatopenga
800+60m-2m^{2}=120
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-m ki te 20+2m ka whakakotahi i ngā kupu rite.
800+60m-2m^{2}-120=0
Tangohia te 120 mai i ngā taha e rua.
680+60m-2m^{2}=0
Tangohia te 120 i te 800, ka 680.
-2m^{2}+60m+680=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-60±\sqrt{60^{2}-4\left(-2\right)\times 680}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 60 mō b, me 680 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-60±\sqrt{3600-4\left(-2\right)\times 680}}{2\left(-2\right)}
Pūrua 60.
m=\frac{-60±\sqrt{3600+8\times 680}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
m=\frac{-60±\sqrt{3600+5440}}{2\left(-2\right)}
Whakareatia 8 ki te 680.
m=\frac{-60±\sqrt{9040}}{2\left(-2\right)}
Tāpiri 3600 ki te 5440.
m=\frac{-60±4\sqrt{565}}{2\left(-2\right)}
Tuhia te pūtakerua o te 9040.
m=\frac{-60±4\sqrt{565}}{-4}
Whakareatia 2 ki te -2.
m=\frac{4\sqrt{565}-60}{-4}
Nā, me whakaoti te whārite m=\frac{-60±4\sqrt{565}}{-4} ina he tāpiri te ±. Tāpiri -60 ki te 4\sqrt{565}.
m=15-\sqrt{565}
Whakawehe -60+4\sqrt{565} ki te -4.
m=\frac{-4\sqrt{565}-60}{-4}
Nā, me whakaoti te whārite m=\frac{-60±4\sqrt{565}}{-4} ina he tango te ±. Tango 4\sqrt{565} mai i -60.
m=\sqrt{565}+15
Whakawehe -60-4\sqrt{565} ki te -4.
m=15-\sqrt{565} m=\sqrt{565}+15
Kua oti te whārite te whakatau.
800+60m-2m^{2}=120
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-m ki te 20+2m ka whakakotahi i ngā kupu rite.
60m-2m^{2}=120-800
Tangohia te 800 mai i ngā taha e rua.
60m-2m^{2}=-680
Tangohia te 800 i te 120, ka -680.
-2m^{2}+60m=-680
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2m^{2}+60m}{-2}=-\frac{680}{-2}
Whakawehea ngā taha e rua ki te -2.
m^{2}+\frac{60}{-2}m=-\frac{680}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
m^{2}-30m=-\frac{680}{-2}
Whakawehe 60 ki te -2.
m^{2}-30m=340
Whakawehe -680 ki te -2.
m^{2}-30m+\left(-15\right)^{2}=340+\left(-15\right)^{2}
Whakawehea te -30, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -15. Nā, tāpiria te pūrua o te -15 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-30m+225=340+225
Pūrua -15.
m^{2}-30m+225=565
Tāpiri 340 ki te 225.
\left(m-15\right)^{2}=565
Tauwehea m^{2}-30m+225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-15\right)^{2}}=\sqrt{565}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-15=\sqrt{565} m-15=-\sqrt{565}
Whakarūnātia.
m=\sqrt{565}+15 m=15-\sqrt{565}
Me tāpiri 15 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}