Whakaoti mō x
x=22
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+12x-40=\left(5x-2\right)\left(x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-8 ki te x+5 ka whakakotahi i ngā kupu rite.
4x^{2}+12x-40=5x^{2}-12x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x-2 ki te x-2 ka whakakotahi i ngā kupu rite.
4x^{2}+12x-40-5x^{2}=-12x+4
Tangohia te 5x^{2} mai i ngā taha e rua.
-x^{2}+12x-40=-12x+4
Pahekotia te 4x^{2} me -5x^{2}, ka -x^{2}.
-x^{2}+12x-40+12x=4
Me tāpiri te 12x ki ngā taha e rua.
-x^{2}+24x-40=4
Pahekotia te 12x me 12x, ka 24x.
-x^{2}+24x-40-4=0
Tangohia te 4 mai i ngā taha e rua.
-x^{2}+24x-44=0
Tangohia te 4 i te -40, ka -44.
x=\frac{-24±\sqrt{24^{2}-4\left(-1\right)\left(-44\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 24 mō b, me -44 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-1\right)\left(-44\right)}}{2\left(-1\right)}
Pūrua 24.
x=\frac{-24±\sqrt{576+4\left(-44\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-24±\sqrt{576-176}}{2\left(-1\right)}
Whakareatia 4 ki te -44.
x=\frac{-24±\sqrt{400}}{2\left(-1\right)}
Tāpiri 576 ki te -176.
x=\frac{-24±20}{2\left(-1\right)}
Tuhia te pūtakerua o te 400.
x=\frac{-24±20}{-2}
Whakareatia 2 ki te -1.
x=-\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{-24±20}{-2} ina he tāpiri te ±. Tāpiri -24 ki te 20.
x=2
Whakawehe -4 ki te -2.
x=-\frac{44}{-2}
Nā, me whakaoti te whārite x=\frac{-24±20}{-2} ina he tango te ±. Tango 20 mai i -24.
x=22
Whakawehe -44 ki te -2.
x=2 x=22
Kua oti te whārite te whakatau.
4x^{2}+12x-40=\left(5x-2\right)\left(x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-8 ki te x+5 ka whakakotahi i ngā kupu rite.
4x^{2}+12x-40=5x^{2}-12x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x-2 ki te x-2 ka whakakotahi i ngā kupu rite.
4x^{2}+12x-40-5x^{2}=-12x+4
Tangohia te 5x^{2} mai i ngā taha e rua.
-x^{2}+12x-40=-12x+4
Pahekotia te 4x^{2} me -5x^{2}, ka -x^{2}.
-x^{2}+12x-40+12x=4
Me tāpiri te 12x ki ngā taha e rua.
-x^{2}+24x-40=4
Pahekotia te 12x me 12x, ka 24x.
-x^{2}+24x=4+40
Me tāpiri te 40 ki ngā taha e rua.
-x^{2}+24x=44
Tāpirihia te 4 ki te 40, ka 44.
\frac{-x^{2}+24x}{-1}=\frac{44}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{24}{-1}x=\frac{44}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-24x=\frac{44}{-1}
Whakawehe 24 ki te -1.
x^{2}-24x=-44
Whakawehe 44 ki te -1.
x^{2}-24x+\left(-12\right)^{2}=-44+\left(-12\right)^{2}
Whakawehea te -24, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -12. Nā, tāpiria te pūrua o te -12 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-24x+144=-44+144
Pūrua -12.
x^{2}-24x+144=100
Tāpiri -44 ki te 144.
\left(x-12\right)^{2}=100
Tauwehea x^{2}-24x+144. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-12\right)^{2}}=\sqrt{100}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-12=10 x-12=-10
Whakarūnātia.
x=22 x=2
Me tāpiri 12 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}