Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{3}+x^{2}+9x-9=\left(2x+1\right)\left(2x^{2}-3x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-3 ki te x^{2}+x+3 ka whakakotahi i ngā kupu rite.
4x^{3}+x^{2}+9x-9=4x^{3}-4x^{2}-3x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+1 ki te 2x^{2}-3x ka whakakotahi i ngā kupu rite.
4x^{3}+x^{2}+9x-9-4x^{3}=-4x^{2}-3x
Tangohia te 4x^{3} mai i ngā taha e rua.
x^{2}+9x-9=-4x^{2}-3x
Pahekotia te 4x^{3} me -4x^{3}, ka 0.
x^{2}+9x-9+4x^{2}=-3x
Me tāpiri te 4x^{2} ki ngā taha e rua.
5x^{2}+9x-9=-3x
Pahekotia te x^{2} me 4x^{2}, ka 5x^{2}.
5x^{2}+9x-9+3x=0
Me tāpiri te 3x ki ngā taha e rua.
5x^{2}+12x-9=0
Pahekotia te 9x me 3x, ka 12x.
a+b=12 ab=5\left(-9\right)=-45
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,45 -3,15 -5,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -45.
-1+45=44 -3+15=12 -5+9=4
Tātaihia te tapeke mō ia takirua.
a=-3 b=15
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(5x^{2}-3x\right)+\left(15x-9\right)
Tuhia anō te 5x^{2}+12x-9 hei \left(5x^{2}-3x\right)+\left(15x-9\right).
x\left(5x-3\right)+3\left(5x-3\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(5x-3\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi 5x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{5} x=-3
Hei kimi otinga whārite, me whakaoti te 5x-3=0 me te x+3=0.
4x^{3}+x^{2}+9x-9=\left(2x+1\right)\left(2x^{2}-3x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-3 ki te x^{2}+x+3 ka whakakotahi i ngā kupu rite.
4x^{3}+x^{2}+9x-9=4x^{3}-4x^{2}-3x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+1 ki te 2x^{2}-3x ka whakakotahi i ngā kupu rite.
4x^{3}+x^{2}+9x-9-4x^{3}=-4x^{2}-3x
Tangohia te 4x^{3} mai i ngā taha e rua.
x^{2}+9x-9=-4x^{2}-3x
Pahekotia te 4x^{3} me -4x^{3}, ka 0.
x^{2}+9x-9+4x^{2}=-3x
Me tāpiri te 4x^{2} ki ngā taha e rua.
5x^{2}+9x-9=-3x
Pahekotia te x^{2} me 4x^{2}, ka 5x^{2}.
5x^{2}+9x-9+3x=0
Me tāpiri te 3x ki ngā taha e rua.
5x^{2}+12x-9=0
Pahekotia te 9x me 3x, ka 12x.
x=\frac{-12±\sqrt{12^{2}-4\times 5\left(-9\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 12 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 5\left(-9\right)}}{2\times 5}
Pūrua 12.
x=\frac{-12±\sqrt{144-20\left(-9\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-12±\sqrt{144+180}}{2\times 5}
Whakareatia -20 ki te -9.
x=\frac{-12±\sqrt{324}}{2\times 5}
Tāpiri 144 ki te 180.
x=\frac{-12±18}{2\times 5}
Tuhia te pūtakerua o te 324.
x=\frac{-12±18}{10}
Whakareatia 2 ki te 5.
x=\frac{6}{10}
Nā, me whakaoti te whārite x=\frac{-12±18}{10} ina he tāpiri te ±. Tāpiri -12 ki te 18.
x=\frac{3}{5}
Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{30}{10}
Nā, me whakaoti te whārite x=\frac{-12±18}{10} ina he tango te ±. Tango 18 mai i -12.
x=-3
Whakawehe -30 ki te 10.
x=\frac{3}{5} x=-3
Kua oti te whārite te whakatau.
4x^{3}+x^{2}+9x-9=\left(2x+1\right)\left(2x^{2}-3x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-3 ki te x^{2}+x+3 ka whakakotahi i ngā kupu rite.
4x^{3}+x^{2}+9x-9=4x^{3}-4x^{2}-3x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+1 ki te 2x^{2}-3x ka whakakotahi i ngā kupu rite.
4x^{3}+x^{2}+9x-9-4x^{3}=-4x^{2}-3x
Tangohia te 4x^{3} mai i ngā taha e rua.
x^{2}+9x-9=-4x^{2}-3x
Pahekotia te 4x^{3} me -4x^{3}, ka 0.
x^{2}+9x-9+4x^{2}=-3x
Me tāpiri te 4x^{2} ki ngā taha e rua.
5x^{2}+9x-9=-3x
Pahekotia te x^{2} me 4x^{2}, ka 5x^{2}.
5x^{2}+9x-9+3x=0
Me tāpiri te 3x ki ngā taha e rua.
5x^{2}+12x-9=0
Pahekotia te 9x me 3x, ka 12x.
5x^{2}+12x=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{5x^{2}+12x}{5}=\frac{9}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{12}{5}x=\frac{9}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=\frac{9}{5}+\left(\frac{6}{5}\right)^{2}
Whakawehea te \frac{12}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{6}{5}. Nā, tāpiria te pūrua o te \frac{6}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{9}{5}+\frac{36}{25}
Pūruatia \frac{6}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{81}{25}
Tāpiri \frac{9}{5} ki te \frac{36}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{6}{5}\right)^{2}=\frac{81}{25}
Tauwehea x^{2}+\frac{12}{5}x+\frac{36}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{6}{5}=\frac{9}{5} x+\frac{6}{5}=-\frac{9}{5}
Whakarūnātia.
x=\frac{3}{5} x=-3
Me tango \frac{6}{5} mai i ngā taha e rua o te whārite.