Whakaoti mō x (complex solution)
x=\frac{4+\sqrt{14}i}{15}\approx 0.266666667+0.249443826i
x=\frac{-\sqrt{14}i+4}{15}\approx 0.266666667-0.249443826i
Graph
Tohaina
Kua tāruatia ki te papatopenga
16x^{2}-8x+1=\left(x-1\right)\left(x+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4x-1\right)^{2}.
16x^{2}-8x+1=x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
16x^{2}-8x+1-x^{2}=-1
Tangohia te x^{2} mai i ngā taha e rua.
15x^{2}-8x+1=-1
Pahekotia te 16x^{2} me -x^{2}, ka 15x^{2}.
15x^{2}-8x+1+1=0
Me tāpiri te 1 ki ngā taha e rua.
15x^{2}-8x+2=0
Tāpirihia te 1 ki te 1, ka 2.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15\times 2}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, -8 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15\times 2}}{2\times 15}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-60\times 2}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-\left(-8\right)±\sqrt{64-120}}{2\times 15}
Whakareatia -60 ki te 2.
x=\frac{-\left(-8\right)±\sqrt{-56}}{2\times 15}
Tāpiri 64 ki te -120.
x=\frac{-\left(-8\right)±2\sqrt{14}i}{2\times 15}
Tuhia te pūtakerua o te -56.
x=\frac{8±2\sqrt{14}i}{2\times 15}
Ko te tauaro o -8 ko 8.
x=\frac{8±2\sqrt{14}i}{30}
Whakareatia 2 ki te 15.
x=\frac{8+2\sqrt{14}i}{30}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{14}i}{30} ina he tāpiri te ±. Tāpiri 8 ki te 2i\sqrt{14}.
x=\frac{4+\sqrt{14}i}{15}
Whakawehe 8+2i\sqrt{14} ki te 30.
x=\frac{-2\sqrt{14}i+8}{30}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{14}i}{30} ina he tango te ±. Tango 2i\sqrt{14} mai i 8.
x=\frac{-\sqrt{14}i+4}{15}
Whakawehe 8-2i\sqrt{14} ki te 30.
x=\frac{4+\sqrt{14}i}{15} x=\frac{-\sqrt{14}i+4}{15}
Kua oti te whārite te whakatau.
16x^{2}-8x+1=\left(x-1\right)\left(x+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4x-1\right)^{2}.
16x^{2}-8x+1=x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
16x^{2}-8x+1-x^{2}=-1
Tangohia te x^{2} mai i ngā taha e rua.
15x^{2}-8x+1=-1
Pahekotia te 16x^{2} me -x^{2}, ka 15x^{2}.
15x^{2}-8x=-1-1
Tangohia te 1 mai i ngā taha e rua.
15x^{2}-8x=-2
Tangohia te 1 i te -1, ka -2.
\frac{15x^{2}-8x}{15}=-\frac{2}{15}
Whakawehea ngā taha e rua ki te 15.
x^{2}-\frac{8}{15}x=-\frac{2}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x^{2}-\frac{8}{15}x+\left(-\frac{4}{15}\right)^{2}=-\frac{2}{15}+\left(-\frac{4}{15}\right)^{2}
Whakawehea te -\frac{8}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{15}. Nā, tāpiria te pūrua o te -\frac{4}{15} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{15}x+\frac{16}{225}=-\frac{2}{15}+\frac{16}{225}
Pūruatia -\frac{4}{15} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{8}{15}x+\frac{16}{225}=-\frac{14}{225}
Tāpiri -\frac{2}{15} ki te \frac{16}{225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{4}{15}\right)^{2}=-\frac{14}{225}
Tauwehea x^{2}-\frac{8}{15}x+\frac{16}{225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{15}\right)^{2}}=\sqrt{-\frac{14}{225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{15}=\frac{\sqrt{14}i}{15} x-\frac{4}{15}=-\frac{\sqrt{14}i}{15}
Whakarūnātia.
x=\frac{4+\sqrt{14}i}{15} x=\frac{-\sqrt{14}i+4}{15}
Me tāpiri \frac{4}{15} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}