Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4^{2}x^{2}+\left(3x\right)^{2}=37^{2}
Whakarohaina te \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=37^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16x^{2}+3^{2}x^{2}=37^{2}
Whakarohaina te \left(3x\right)^{2}.
16x^{2}+9x^{2}=37^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
25x^{2}=37^{2}
Pahekotia te 16x^{2} me 9x^{2}, ka 25x^{2}.
25x^{2}=1369
Tātaihia te 37 mā te pū o 2, kia riro ko 1369.
25x^{2}-1369=0
Tangohia te 1369 mai i ngā taha e rua.
\left(5x-37\right)\left(5x+37\right)=0
Whakaarohia te 25x^{2}-1369. Tuhia anō te 25x^{2}-1369 hei \left(5x\right)^{2}-37^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{37}{5} x=-\frac{37}{5}
Hei kimi otinga whārite, me whakaoti te 5x-37=0 me te 5x+37=0.
4^{2}x^{2}+\left(3x\right)^{2}=37^{2}
Whakarohaina te \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=37^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16x^{2}+3^{2}x^{2}=37^{2}
Whakarohaina te \left(3x\right)^{2}.
16x^{2}+9x^{2}=37^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
25x^{2}=37^{2}
Pahekotia te 16x^{2} me 9x^{2}, ka 25x^{2}.
25x^{2}=1369
Tātaihia te 37 mā te pū o 2, kia riro ko 1369.
x^{2}=\frac{1369}{25}
Whakawehea ngā taha e rua ki te 25.
x=\frac{37}{5} x=-\frac{37}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4^{2}x^{2}+\left(3x\right)^{2}=37^{2}
Whakarohaina te \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=37^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16x^{2}+3^{2}x^{2}=37^{2}
Whakarohaina te \left(3x\right)^{2}.
16x^{2}+9x^{2}=37^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
25x^{2}=37^{2}
Pahekotia te 16x^{2} me 9x^{2}, ka 25x^{2}.
25x^{2}=1369
Tātaihia te 37 mā te pū o 2, kia riro ko 1369.
25x^{2}-1369=0
Tangohia te 1369 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-1369\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 0 mō b, me -1369 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\left(-1369\right)}}{2\times 25}
Pūrua 0.
x=\frac{0±\sqrt{-100\left(-1369\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{0±\sqrt{136900}}{2\times 25}
Whakareatia -100 ki te -1369.
x=\frac{0±370}{2\times 25}
Tuhia te pūtakerua o te 136900.
x=\frac{0±370}{50}
Whakareatia 2 ki te 25.
x=\frac{37}{5}
Nā, me whakaoti te whārite x=\frac{0±370}{50} ina he tāpiri te ±. Whakahekea te hautanga \frac{370}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{37}{5}
Nā, me whakaoti te whārite x=\frac{0±370}{50} ina he tango te ±. Whakahekea te hautanga \frac{-370}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=\frac{37}{5} x=-\frac{37}{5}
Kua oti te whārite te whakatau.