Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{3}-2x^{2}+5x-1+7x^{2}-x+4
Pahekotia te 4x^{3} me 2x^{3}, ka 6x^{3}.
6x^{3}+5x^{2}+5x-1-x+4
Pahekotia te -2x^{2} me 7x^{2}, ka 5x^{2}.
6x^{3}+5x^{2}+4x-1+4
Pahekotia te 5x me -x, ka 4x.
6x^{3}+5x^{2}+4x+3
Tāpirihia te -1 ki te 4, ka 3.
\frac{\mathrm{d}}{\mathrm{d}x}(6x^{3}-2x^{2}+5x-1+7x^{2}-x+4)
Pahekotia te 4x^{3} me 2x^{3}, ka 6x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(6x^{3}+5x^{2}+5x-1-x+4)
Pahekotia te -2x^{2} me 7x^{2}, ka 5x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(6x^{3}+5x^{2}+4x-1+4)
Pahekotia te 5x me -x, ka 4x.
\frac{\mathrm{d}}{\mathrm{d}x}(6x^{3}+5x^{2}+4x+3)
Tāpirihia te -1 ki te 4, ka 3.
3\times 6x^{3-1}+2\times 5x^{2-1}+4x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
18x^{3-1}+2\times 5x^{2-1}+4x^{1-1}
Whakareatia 3 ki te 6.
18x^{2}+2\times 5x^{2-1}+4x^{1-1}
Tango 1 mai i 3.
18x^{2}+10x^{2-1}+4x^{1-1}
Whakareatia 2 ki te 5.
18x^{2}+10x^{1}+4x^{1-1}
Tango 1 mai i 2.
18x^{2}+10x^{1}+4x^{0}
Tango 1 mai i 1.
18x^{2}+10x+4x^{0}
Mō tētahi kupu t, t^{1}=t.
18x^{2}+10x+4\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
18x^{2}+10x+4
Mō tētahi kupu t, t\times 1=t me 1t=t.