Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

11x^{3}+2x^{2}-11x+3-5x^{2}-9x
Pahekotia te 4x^{3} me 7x^{3}, ka 11x^{3}.
11x^{3}-3x^{2}-11x+3-9x
Pahekotia te 2x^{2} me -5x^{2}, ka -3x^{2}.
11x^{3}-3x^{2}-20x+3
Pahekotia te -11x me -9x, ka -20x.
\frac{\mathrm{d}}{\mathrm{d}x}(11x^{3}+2x^{2}-11x+3-5x^{2}-9x)
Pahekotia te 4x^{3} me 7x^{3}, ka 11x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(11x^{3}-3x^{2}-11x+3-9x)
Pahekotia te 2x^{2} me -5x^{2}, ka -3x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(11x^{3}-3x^{2}-20x+3)
Pahekotia te -11x me -9x, ka -20x.
3\times 11x^{3-1}+2\left(-3\right)x^{2-1}-20x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
33x^{3-1}+2\left(-3\right)x^{2-1}-20x^{1-1}
Whakareatia 3 ki te 11.
33x^{2}+2\left(-3\right)x^{2-1}-20x^{1-1}
Tango 1 mai i 3.
33x^{2}-6x^{2-1}-20x^{1-1}
Whakareatia 2 ki te -3.
33x^{2}-6x^{1}-20x^{1-1}
Tango 1 mai i 2.
33x^{2}-6x^{1}-20x^{0}
Tango 1 mai i 1.
33x^{2}-6x-20x^{0}
Mō tētahi kupu t, t^{1}=t.
33x^{2}-6x-20
Mō tētahi kupu t mahue te 0, t^{0}=1.