Aromātai
11x^{3}-3x^{2}-20x+3
Kimi Pārōnaki e ai ki x
33x^{2}-6x-20
Graph
Tohaina
Kua tāruatia ki te papatopenga
11x^{3}+2x^{2}-11x+3-5x^{2}-9x
Pahekotia te 4x^{3} me 7x^{3}, ka 11x^{3}.
11x^{3}-3x^{2}-11x+3-9x
Pahekotia te 2x^{2} me -5x^{2}, ka -3x^{2}.
11x^{3}-3x^{2}-20x+3
Pahekotia te -11x me -9x, ka -20x.
\frac{\mathrm{d}}{\mathrm{d}x}(11x^{3}+2x^{2}-11x+3-5x^{2}-9x)
Pahekotia te 4x^{3} me 7x^{3}, ka 11x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(11x^{3}-3x^{2}-11x+3-9x)
Pahekotia te 2x^{2} me -5x^{2}, ka -3x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(11x^{3}-3x^{2}-20x+3)
Pahekotia te -11x me -9x, ka -20x.
3\times 11x^{3-1}+2\left(-3\right)x^{2-1}-20x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
33x^{3-1}+2\left(-3\right)x^{2-1}-20x^{1-1}
Whakareatia 3 ki te 11.
33x^{2}+2\left(-3\right)x^{2-1}-20x^{1-1}
Tango 1 mai i 3.
33x^{2}-6x^{2-1}-20x^{1-1}
Whakareatia 2 ki te -3.
33x^{2}-6x^{1}-20x^{1-1}
Tango 1 mai i 2.
33x^{2}-6x^{1}-20x^{0}
Tango 1 mai i 1.
33x^{2}-6x-20x^{0}
Mō tētahi kupu t, t^{1}=t.
33x^{2}-6x-20
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}