Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

16x^{2}+48x+36=2x+3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4x+6\right)^{2}.
16x^{2}+48x+36-2x=3
Tangohia te 2x mai i ngā taha e rua.
16x^{2}+46x+36=3
Pahekotia te 48x me -2x, ka 46x.
16x^{2}+46x+36-3=0
Tangohia te 3 mai i ngā taha e rua.
16x^{2}+46x+33=0
Tangohia te 3 i te 36, ka 33.
a+b=46 ab=16\times 33=528
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 16x^{2}+ax+bx+33. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,528 2,264 3,176 4,132 6,88 8,66 11,48 12,44 16,33 22,24
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 528.
1+528=529 2+264=266 3+176=179 4+132=136 6+88=94 8+66=74 11+48=59 12+44=56 16+33=49 22+24=46
Tātaihia te tapeke mō ia takirua.
a=22 b=24
Ko te otinga te takirua ka hoatu i te tapeke 46.
\left(16x^{2}+22x\right)+\left(24x+33\right)
Tuhia anō te 16x^{2}+46x+33 hei \left(16x^{2}+22x\right)+\left(24x+33\right).
2x\left(8x+11\right)+3\left(8x+11\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(8x+11\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 8x+11 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{11}{8} x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 8x+11=0 me te 2x+3=0.
16x^{2}+48x+36=2x+3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4x+6\right)^{2}.
16x^{2}+48x+36-2x=3
Tangohia te 2x mai i ngā taha e rua.
16x^{2}+46x+36=3
Pahekotia te 48x me -2x, ka 46x.
16x^{2}+46x+36-3=0
Tangohia te 3 mai i ngā taha e rua.
16x^{2}+46x+33=0
Tangohia te 3 i te 36, ka 33.
x=\frac{-46±\sqrt{46^{2}-4\times 16\times 33}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, 46 mō b, me 33 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-46±\sqrt{2116-4\times 16\times 33}}{2\times 16}
Pūrua 46.
x=\frac{-46±\sqrt{2116-64\times 33}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-46±\sqrt{2116-2112}}{2\times 16}
Whakareatia -64 ki te 33.
x=\frac{-46±\sqrt{4}}{2\times 16}
Tāpiri 2116 ki te -2112.
x=\frac{-46±2}{2\times 16}
Tuhia te pūtakerua o te 4.
x=\frac{-46±2}{32}
Whakareatia 2 ki te 16.
x=-\frac{44}{32}
Nā, me whakaoti te whārite x=\frac{-46±2}{32} ina he tāpiri te ±. Tāpiri -46 ki te 2.
x=-\frac{11}{8}
Whakahekea te hautanga \frac{-44}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{48}{32}
Nā, me whakaoti te whārite x=\frac{-46±2}{32} ina he tango te ±. Tango 2 mai i -46.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-48}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
x=-\frac{11}{8} x=-\frac{3}{2}
Kua oti te whārite te whakatau.
16x^{2}+48x+36=2x+3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4x+6\right)^{2}.
16x^{2}+48x+36-2x=3
Tangohia te 2x mai i ngā taha e rua.
16x^{2}+46x+36=3
Pahekotia te 48x me -2x, ka 46x.
16x^{2}+46x=3-36
Tangohia te 36 mai i ngā taha e rua.
16x^{2}+46x=-33
Tangohia te 36 i te 3, ka -33.
\frac{16x^{2}+46x}{16}=-\frac{33}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\frac{46}{16}x=-\frac{33}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}+\frac{23}{8}x=-\frac{33}{16}
Whakahekea te hautanga \frac{46}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{23}{8}x+\left(\frac{23}{16}\right)^{2}=-\frac{33}{16}+\left(\frac{23}{16}\right)^{2}
Whakawehea te \frac{23}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{23}{16}. Nā, tāpiria te pūrua o te \frac{23}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{23}{8}x+\frac{529}{256}=-\frac{33}{16}+\frac{529}{256}
Pūruatia \frac{23}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{23}{8}x+\frac{529}{256}=\frac{1}{256}
Tāpiri -\frac{33}{16} ki te \frac{529}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{23}{16}\right)^{2}=\frac{1}{256}
Tauwehea x^{2}+\frac{23}{8}x+\frac{529}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{16}\right)^{2}}=\sqrt{\frac{1}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{23}{16}=\frac{1}{16} x+\frac{23}{16}=-\frac{1}{16}
Whakarūnātia.
x=-\frac{11}{8} x=-\frac{3}{2}
Me tango \frac{23}{16} mai i ngā taha e rua o te whārite.