Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10v^{2}+5-3v-7
Pahekotia te 4v^{2} me 6v^{2}, ka 10v^{2}.
10v^{2}-2-3v
Tangohia te 7 i te 5, ka -2.
factor(10v^{2}+5-3v-7)
Pahekotia te 4v^{2} me 6v^{2}, ka 10v^{2}.
factor(10v^{2}-2-3v)
Tangohia te 7 i te 5, ka -2.
10v^{2}-3v-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 10\left(-2\right)}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-\left(-3\right)±\sqrt{9-4\times 10\left(-2\right)}}{2\times 10}
Pūrua -3.
v=\frac{-\left(-3\right)±\sqrt{9-40\left(-2\right)}}{2\times 10}
Whakareatia -4 ki te 10.
v=\frac{-\left(-3\right)±\sqrt{9+80}}{2\times 10}
Whakareatia -40 ki te -2.
v=\frac{-\left(-3\right)±\sqrt{89}}{2\times 10}
Tāpiri 9 ki te 80.
v=\frac{3±\sqrt{89}}{2\times 10}
Ko te tauaro o -3 ko 3.
v=\frac{3±\sqrt{89}}{20}
Whakareatia 2 ki te 10.
v=\frac{\sqrt{89}+3}{20}
Nā, me whakaoti te whārite v=\frac{3±\sqrt{89}}{20} ina he tāpiri te ±. Tāpiri 3 ki te \sqrt{89}.
v=\frac{3-\sqrt{89}}{20}
Nā, me whakaoti te whārite v=\frac{3±\sqrt{89}}{20} ina he tango te ±. Tango \sqrt{89} mai i 3.
10v^{2}-3v-2=10\left(v-\frac{\sqrt{89}+3}{20}\right)\left(v-\frac{3-\sqrt{89}}{20}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3+\sqrt{89}}{20} mō te x_{1} me te \frac{3-\sqrt{89}}{20} mō te x_{2}.