Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4^{2}k^{2}-4\times 6\left(k^{2}-1\right)=0
Whakarohaina te \left(4k\right)^{2}.
16k^{2}-4\times 6\left(k^{2}-1\right)=0
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16k^{2}-24\left(k^{2}-1\right)=0
Whakareatia te 4 ki te 6, ka 24.
16k^{2}-24k^{2}+24=0
Whakamahia te āhuatanga tohatoha hei whakarea te -24 ki te k^{2}-1.
-8k^{2}+24=0
Pahekotia te 16k^{2} me -24k^{2}, ka -8k^{2}.
-8k^{2}=-24
Tangohia te 24 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
k^{2}=\frac{-24}{-8}
Whakawehea ngā taha e rua ki te -8.
k^{2}=3
Whakawehea te -24 ki te -8, kia riro ko 3.
k=\sqrt{3} k=-\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4^{2}k^{2}-4\times 6\left(k^{2}-1\right)=0
Whakarohaina te \left(4k\right)^{2}.
16k^{2}-4\times 6\left(k^{2}-1\right)=0
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16k^{2}-24\left(k^{2}-1\right)=0
Whakareatia te 4 ki te 6, ka 24.
16k^{2}-24k^{2}+24=0
Whakamahia te āhuatanga tohatoha hei whakarea te -24 ki te k^{2}-1.
-8k^{2}+24=0
Pahekotia te 16k^{2} me -24k^{2}, ka -8k^{2}.
k=\frac{0±\sqrt{0^{2}-4\left(-8\right)\times 24}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 0 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-8\right)\times 24}}{2\left(-8\right)}
Pūrua 0.
k=\frac{0±\sqrt{32\times 24}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
k=\frac{0±\sqrt{768}}{2\left(-8\right)}
Whakareatia 32 ki te 24.
k=\frac{0±16\sqrt{3}}{2\left(-8\right)}
Tuhia te pūtakerua o te 768.
k=\frac{0±16\sqrt{3}}{-16}
Whakareatia 2 ki te -8.
k=-\sqrt{3}
Nā, me whakaoti te whārite k=\frac{0±16\sqrt{3}}{-16} ina he tāpiri te ±.
k=\sqrt{3}
Nā, me whakaoti te whārite k=\frac{0±16\sqrt{3}}{-16} ina he tango te ±.
k=-\sqrt{3} k=\sqrt{3}
Kua oti te whārite te whakatau.